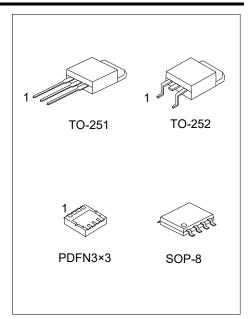
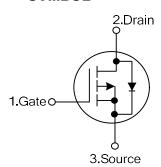
UNISONIC TECHNOLOGIES CO., LTD


UT5504 Power MOSFET

P-CHANNEL LOGIC LEVEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

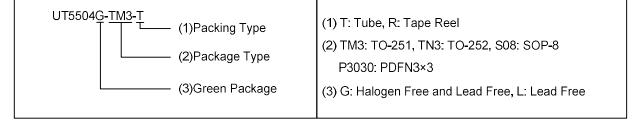
DESCRIPTION

The UTC UT5504 is a P-channel enhancement mode power MOSFET, providing customers fast switching, ruggedized device design, low on-resistance and cost-effectiveness by UTC's advanced technology.

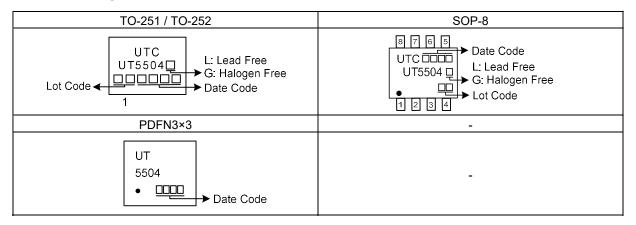

The UTC UT5504 can be used in applications such as DC/DC converters, all commercial-industrial surface mount and low voltage devices.

FEATURES

- * Low On-Resistance
- * Simple Drive Requirement
- * Fast Switching Speed


SYMBOL

ORDERING INFORMATION


Ordering Number		Dookogo	Pin Assignment							Dooking	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UT5504L-TM3-T	UT5504G-TM3-T	TO-251	G	D	S	-	-	-	-		Tube
UT5504L-TN3-R	UT5504G-TN3-R	TO-252	G	D	s	-	-	-	-	-	Tape Reel
UT5504L-S08-R	UT5504G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel
UT5504L-P3030-R	UT5504G-P3030-R	PDFN3×3	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate S: Source D: Drain

www.unisonic.com.tw 1 of 5 UT5504

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DS}	-40	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain Current	T _C =25°C		-8	Α
	T _C =70°C	I _D	-6	Α
Pulsed Drain Current		I _{DM}	-32	Α
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	77	mJ
Power Dissipation	TO-251/TO-252		41	W
	SOP-8	P_{D}	1.6	W
	PDFN3×3		26	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 30mH, I_{AS} = 2.26A, V_{DD} =20V, R_{G} = 25 Ω Starting T_{J} = 25 $^{\circ}$ C

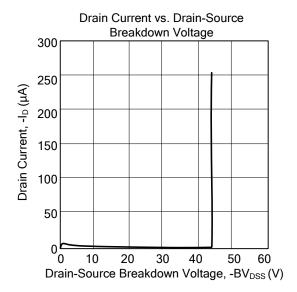
■ THERMAL DATA (NOTE 3)

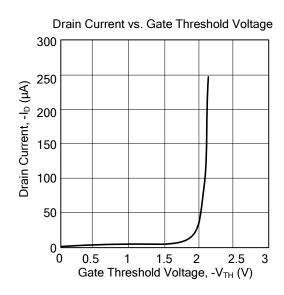
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-251/TO-252		50	°C/W
	SOP-8	Αιθ	90	°C/W
	PDFN3×3		75	°C/W
	TO-251/TO-252		3	°C/W
Junction to Case	SOP-8	θις	78	°C/W
	PDFN3×3		4.8	°C/W

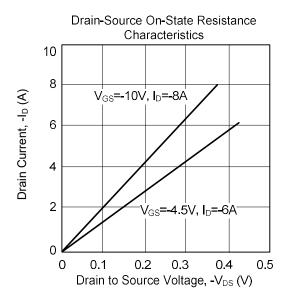
Notes: 1. Pulse width limited by maximum junction temperature.

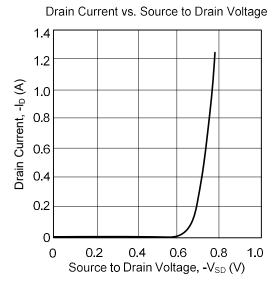
- 2. Duty cycle ≤ 1%
- 3. Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.

■ **ELECTRICAL CHARACTERISTICS** (T_J = 25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV_{DSS}	I _D =-250μA, V _{GS} =0V	-40			V				
Drain Source Lookage Current		V _{DS} =-32V, V _{GS} =0V			1					
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-30V, V _{GS} =0V, T _J =125°C			10	μΑ				
Gate- Source Leakage Current	I_{GSS}	V _{DS} =0V, V _{GS} =±20V			±250	nA				
On-State Drain Current (Note 1)	$I_{D(ON)}$	V _{DS} =-5V, V _{GS} =-10V	-32			Α				
ON CHARACTERISTICS										
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =-250μA	-1.0		-2.5	V				
Static Drain-Source On-State	Б	V _{GS} =-10V, I _D =-8.0A		38	55	mΩ				
Resistance (Note 1)	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-6.0A		55	94	mΩ				
DYNAMIC PARAMETERS										
Input Capacitance	Ciss			860		pF				
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =-10V, f=1MHz		160		pF				
Reverse Transfer Capacitance	C _{RSS}			140		pF				
SWITCHING PARAMETERS (Note 2)										
Total Gate Charge	\mathbf{Q}_{G})/ - 40)/)/ -0 FD)/		25	120	nC				
Gate to Source Charge	Q _{GS}	V _{GS} =-10V, V _{DS} =0.5BV _{DSS} , I _D =-8.0A		5.8		nC				
Gate to Drain Charge	Q_GD			4.8		nC				
Turn-ON Delay Time	t _{D(ON)}	<u> </u>		7.2	35	ns				
Rise Time	t_R	V _{GS} =-10V, V _{DS} =-20V,		17.6	50	ns				
Turn-OFF Delay Time	t _{D(OFF)}	$I_D = -8.0A$, R _{GS} = 6Ω		38	250	ns				
Fall-Time	t⊧			24	120	ns				
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Continuous Current	Is				-8	Α				
Pulsed Current (Note 3)	Ism				-32	Α				
Drain-Source Diode Forward Voltage (Note 1)	V _{SD}	I _F =I _S , V _{GS} =0V			-1.2	V				
Reverse Recovery Time	t _{rr}	5 0		98		ns				
Reverse Recovery Charge	Qrr	l _F =-5.0A, dl _F /dt=100A/μs		220		nC				


Notes: 1. Pulse test: Pulse Width \leq 300 μ s, Duty cycle \leq 2%.


^{2.} Independent of operating temperature.


^{3.} Pulse width limited by maximum junction temperature.

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.