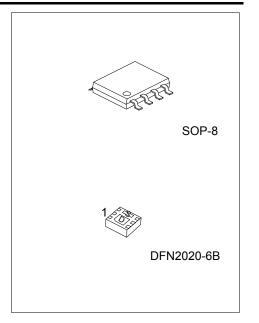
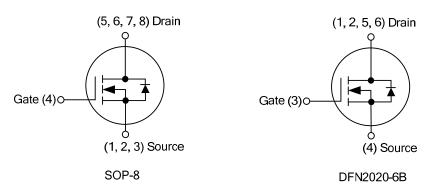


UNISONIC TECHNOLOGIES CO., LTD

UT4392 Power MOSFET

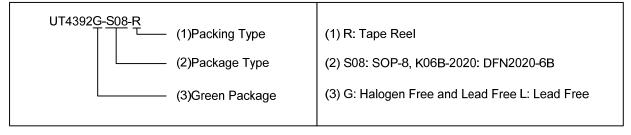

15A, 30V N-CHANNEL POWER MOSFET

DESCRIPTION


The **UT4392** uses UTC advanced technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for being used in such applications: high-Side DC/DC Conversion, notebook and sever.

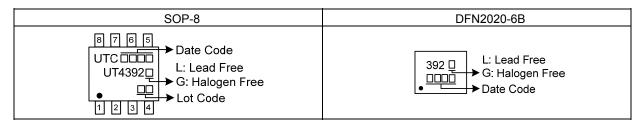
■ FEATURES

- * $R_{DS(ON)} \le 11.5 \text{ m}\Omega$ @ $V_{GS} = 10V$, $I_D = 12.5A$ $R_{DS(ON)} \le 16.5 \text{ m}\Omega$ @ $V_{GS} = 4.5V$, $I_D = 10A$
- * High Density Cell Design for Ultra Low On-resistance


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment						Dealing			
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing	
UT4392L-S08-R	UT4392G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel	
UT4392L-K06B-2020-R	UT4392G-K06B-2020-R	DFN2020-6B	D	D	G	S	D	D	-	-	Tape Reel	


Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 7

UT4392

■ MARKING

UT4392 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified.)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	30	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Continuous Drain Current		I _D 12.5		Α	
Pulsed Drain Current		I _{DM}	50	Α	
Single Pulsed Avalanche Er	Pulsed Avalanche Energy (Note 3)		3.6	mJ	
Peak Diode Recovery dv/dt	(Note 4)	dv/dt	1.2	V/ns	
Power Dissipation	SOP-8	Ь	1.5	W	
	DFN2020-8	P _D	2	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

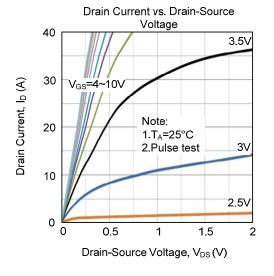
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

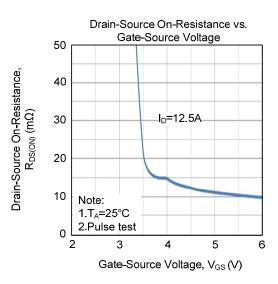
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L=0.1mH, Ias=8.6A, VDD=25V, Rg=25 Ω , Starting TJ = 25°C
- 4. IsD \leq 15A, di/dt \leq 200A/ μ s, VDD \leq BVDSS, Starting TJ = 25°C

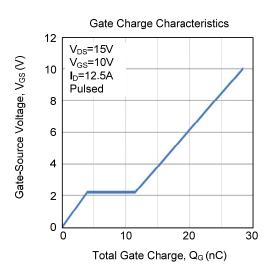
■ THERMAL DATA

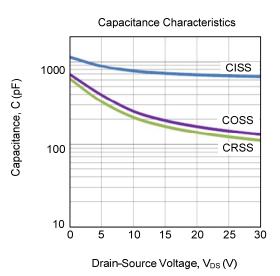
PARAMETER		SYMBOL	RATINGS	UNIT		
Lunction to Ambient	SOP-8	0	90	°C/W		
Junction to Ambient	DFN2020-8	·N2020-8 θ _{JA}	70	°C/W		
handian to Cons	SOP-8	0	83	°C/W		
Junction to Case	DFN2020-8	θ_{JC}	62.5	°C/W		

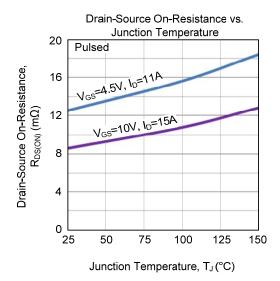
Notes: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

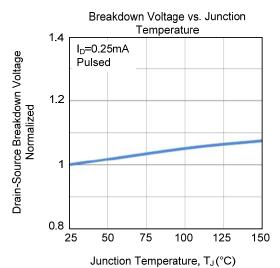

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified.)

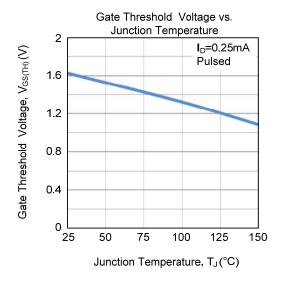

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS}=0V$, $I_D=250\mu A$	30			V				
Drain-Source Leakage Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V			1.0	μΑ				
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\pm20V$, $V_{DS}=0V$			±100	nA				
ON CHARACTERISTICS										
Gate-Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{DS}=250\mu A$	1.0		3.0	V				
Static Drain-Source On-Resistance	В	V _{GS} =10V, I _D =12.5A		8.2	11.5	mΩ				
(Note 1)	$R_{DS(ON)}$	V _{GS} =4.5V, I _D =10A		11.4	16.5	mΩ				
DYNAMIC PARAMETERS										
Input Capacitance	C _{ISS}	\ _45\\ \ _0\\ f=4.0\\		717		pF				
Output Capacitance	Coss	V _{DS} =15V, V _{GS} =0V, f=1.0MHz		194		pF				
Reverse Transfer Capacitance	C _{RSS}	(Note2)		165		pF				
SWITCHING PARAMETERS										
Total Gate Charge	Q_G	V _{DS} =24V, V _{GS} =10V, I _D =12.5A (Note2)		28		nC				
Gate Source Charge	Q_GS			4		nC				
Gate Drain Charge	Q_GD			7.5		nC				
Turn-ON Delay Time	$t_{D(ON)}$			7		ns				
Turn-ON Rise Time	t_R	V _{DD} =15V, I _D =12.5A, V _{GS} =10V		17		ns				
Turn-OFF Delay Time	$t_{D(OFF)}$	R _G =3.3Ω (Note3)		24		ns				
Turn-OFF Fall-Time	t_{F}			23		ns				
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Maximum Continuous Drain-Source Diode		(N-4- 4.5)			12.5	Α				
Forward Current	Is	(Note 4,5)			12.5	А				
Maximum Pulsed Drain-Source Diode	la				50	Α				
Forward Current	I _{SM}				50	A				
Diode Forward Voltage	V_{SD}	I _S =2.7A, V _{GS} =0V			1.3	V				
Reverse Recovery Time	t _{rr}	I _S =12.5A, V _{GS} =0V,		274		ns				
Reverse Recovery Charge	Q_{rr}	dl/dt=100A/µs		8.0		nC				

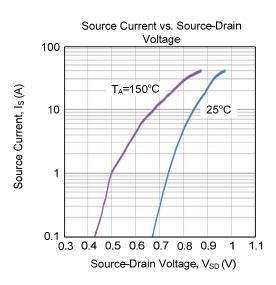

Notes: 1. Pulse Test: $P_W \le 300 \mu S$, Duty Cycle $\le 2\%$.

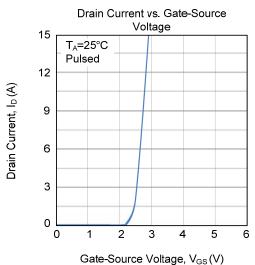

- 2. For DESIGN AID ONLY, not subject to production testing.
- 3. Switching time is essentially independent of operating temperature
- 4. Pulse width limited by the Maximum junction temperature.
- 5. Surface Mounted on FR4 Board, t ≤ 10 sec.

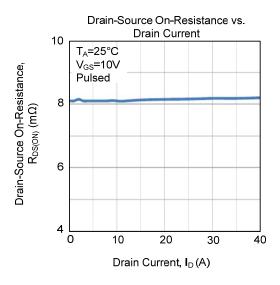

■ TYPICAL CHARACTERISTICS

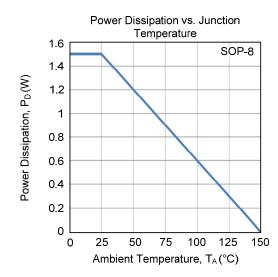


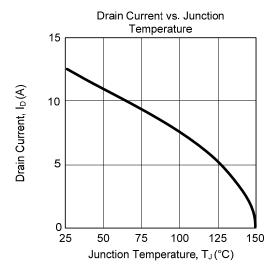


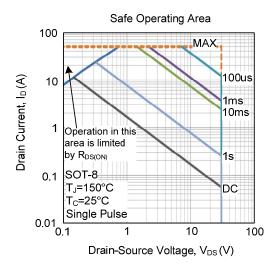







■ TYPICAL CHARACTERISTICS (Cont.)





■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.