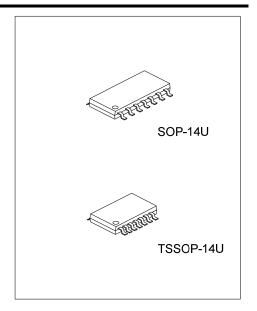
UNISONIC TECHNOLOGIES CO., LTD

LV324


LINEAR INTEGRATED CIRCUIT

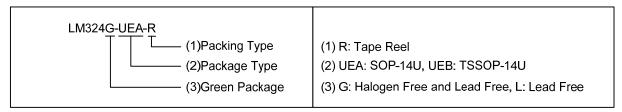
GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

DESCRIPTION

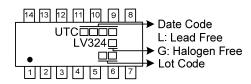
The UTC LV324 is a quad op amp with low supply current and low voltage (2.7~5.5V). It brings nice performance to low voltage and low power systems. With a 1MHz unity-gain frequency. The UTC LV324 has a guaranteed 1V//µs slew rate and low supply current. It provides heavy rail-to-rail (R-to-R) output swing loads and the input common-mode voltage range including ground. Besides, it is also capable for comfortably driving large capacitive loads.

The UTC LV324 has bipolar input and CMOS output for improved noise performance and higher output current drive. It's the most cost effective solution for the applications where low voltage operation, space saving and low price are required.

FEATURES

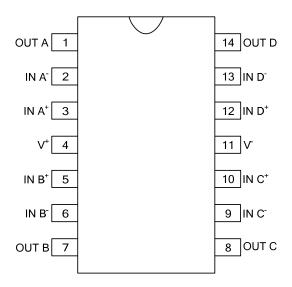

- * 4-Channels Op amps
- * Rail-to-Rail Output Swing
- * Widely Input Common-Mode Voltage Range
- * Low Voltage Operation
- * Low Supply Current: Typ.=410µA @ V+ =5V, V-=0V

* Perfect AC characteristics:


GBW: Typ.=1MHz SR: Typ.=1V/µs φ_m: Typ.=60Deg Gm: Typ.=10dB.

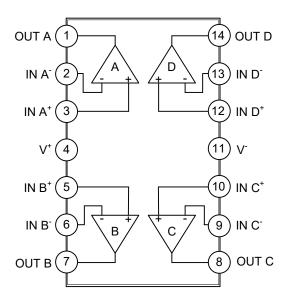
RDERING INFORMATION

Ordering Number		Dealtage	Dealine	
Lead Free	Halogen Free	Package	Packing	
LM324L-UEA-R	LM324G-UEA-R	SOP-14U	Tape Reel	
LM324L-UEB-R	LM324G-UEB-R	TSSOP-14U	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 6


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	FUNCTION			
1	OUT A	Output of channel A			
2	IN A⁻	Inverting Input of Channel A			
3	IN A⁺	Non-Inverting Input of Channel A			
4	V ⁺	Positive of Supply Voltage			
5	IN B⁺	Non-Inverting Input of Channel B			
6	IN B-	Inverting Input of Channel B			
7	OUT B	Output of channel B			
8	OUT C	Output of channel C			
9	IN C-	Inverting Input of Channel C			
10	IN C⁺	Non-Inverting Input of Channel C			
11	V-	Negative of Supply Voltage			
12	IN D ⁺	Non-Inverting Input of Channel D			
13	IN D-	Inverting Input of Channel D			
14	OUT D	Output of channel D			

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Differential Input Voltage		V_{IDM}	±Supply Voltage	V
Supply Voltage (V ⁺ -V ⁻)		V*-V-	5.5	V
Output Short Current to V ⁺		I _{O(SC)}	Note 1	Α
Output Short Current to V		I _{O(SC)}	Note 2	Α
Infrared or Convection (20sec)			235	°C
Power Dissipation	SOP-14U	Ь	1000	mW
	TSSOP-14U	P _D	700	mW
Junction Temperature		TJ	+150	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Shorting output to V⁺ will adversely affect reliability.
- 3. Shorting output to V- will adversely affect reliability.

■ RECOMMENDED OPERATING CONDITIONS

(V+=2.7V~5.5V, and V-=0V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ - V-	2.7 ~ 5.5	V
Operating Free-Air Temperature	T_OPR	-40 ~ +125	°C

Note: The industrial temperature devices operate over this extended temperature range, but with reduced performance. In any case, the internal Junction Temperature (T_J) must not exceed the Absolute Maximum specification of +150°C.

■ 2.7V ELECTRICAL CHARACTERISTICS

All limits guaranteed for T_J=25°C, V+=2.7V, V=0V, V_{CM}=1.0V, V_{OUT}=V+/2 and R_L>1MΩ, unless otherwise specified.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
FARAIVIETER	3 TIVIDOL		(Note 6)	(Note 5)	(Note 6)	UNIT	
DC CHARACTERISTICS							
Input Offset Voltage	Vos			1.7	7	mV	
Input Offset Voltage Average Drift	TCVos			5		μV/°C	
Input Bias Current	lΒ			11	250	nA	
Input Offset Current	los			5	50	nA	
Common Mode Rejection Ratio	CMRR	0V≤V _{CM} ≤1.7V	50	63		dB	
Power Supply Rejection Ratio	PSRR	2.7V≤V+≤5V, V ₀ =1V	50	60		dB	
Innut Common Made Veltage Dange	V _{СМ}	For CMRR≥50dB	0	-0.2		V	
Input Common-Mode Voltage Range				1.9	1.7	V	
Outrot String	V _{OUT}	R _L =10kΩ to 1.35V	V+-100	V+-10		mV	
Output Swing				60	180	mV	
Supply Current	Is	All four amplifiers		260	680	μA	
AC CHARACTERISTICS							
Gain-Bandwidth Product	GBWP	C _L =200pF		1		MHZ	
Phase Margin	φm			60		Deg	
Gain Margin	Gm			10		dB	
Input-Referred Voltage Noise	en	f=1kHZ		46		nV/√HZ	
Input-Referred Current Noise	in	f=1kHZ		0.17		pA/√HZ	

■ 5V ELECTRICAL CHARACTERISTICS (Cont.)

All limits guaranteed for $T_J=25^{\circ}C$, $V^{+}=5V$, $V^{-}=0V$, $V_{CM}=2.0V$, $V_{O}=V^{+}/2$ and $R_L>1M\Omega$, unless otherwise specified. Boldface limits apply at the temperature extremes.

boldiace liftilis apply at the temperati	IIC CAUCITIC	JO.		1		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 6)	TYP (Note 5)	MAX (Note 6)	UNIT
DC CHARACTERISTICS			* ` ` ` `			
loured Offe et Melte ere				1.7	7	mV
Input Offset Voltage	Vos				9	mV
Input Offset Voltage Average Drift	TCVos			5		μV/°C
In and Bing Comment				11	250	nA
Input Bias Current	l _Β				500	nA
Land Official Comment				5	50	nA
Input Offset Current	los				150	nA
Common Mode Rejection Ratio	CMRR	0V≤V _{CM} ≤4V	50	65		dB
Power Supply Rejection Ratio	PSRR	2.7V≤V ⁺ ≤5V, V ₀ =1V, V _{CM} =1V	50	60		dB
Input Common-Mode Voltage Range	V _{СМ}	For CMRR≥50dB	0	-0.2		V
Imput Common-wode Voltage Kange	VCM	FOI CIVINNESOUB		4.2	4	V
Large Signal Voltage Gain (Note 7)	Av		15	100		V/mV
Large Signal Voltage Gain (Note 7)	AV		10			V/mV
	Vo	R _L =2kΩ to 2.5V	V+-300	V+-40		mV
			V+-400			mV
				120	300	mV
Output Swing					400	mV
Output Swing		R _L =10k Ω to 2.5V	V+-100	V+-10		mV
			V+-200			mV
				65	180	mV
					280	mV
Output Shart Circuit Current	lo	Sourching, V _O =0V	5	60		mA
Output Short Circuit Current		Sourching, V _O =5V	10	160		mA
Supply Current	Is	All four amplifiers		410	830	μΑ
Supply Current					1160	μΑ
AC CHARACTERISTICS						
Slew Rate	SR	(Note 8)		1		V/µs
Gain-Bandwidth Product	GBWP	C _L =200pF		1		MH_Z
Phase Margin	φm			60		Deg
Gain Margin	Gm			10		dB
Input-Referred Voltage Noise	en	f=1kH _Z		39		nV/√Hz
Input-Referred Current Noise	in	f=1kH _Z		0.21		pA/√Hz

Notes: 4. The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

- 5. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
- 6. All limits are guaranteed by testing or statistical analysis.
- 7. R_L is connected to V⁻. The output voltage is $0.5V \le V_O \le 4.5V$.
- 8. Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

