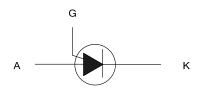


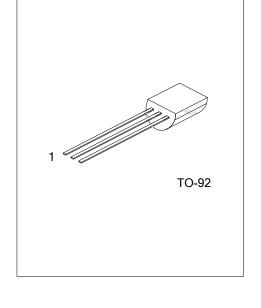
UTC UNISONIC TECHNOLOGIES CO., LTD

2N6116 **Preliminary SCR**

PROGRAMMABLE UNIJUNCTION TRANSISTOR

DESCRIPTION

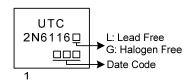

The UTC 2N6116 is a programmable unijunction transistor, it uses UTC's advanced technology to provide customers with low on-state voltage and high peak output voltage, etc.


The UTC 2N6116 is suitable for thyristor-trigger, pulse, oscillator and timing circuits, etc.

FEATURES

- * High peak output voltage
- * Low on-state voltage
- * Low offset voltage
- * Low gate to anode leakage current

SYMBOL



ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N6116L-T92-B	2N6116G-T92-B	TO-92	Α	G	K	Tape Box	
2N6116L-T92-K	2N6116G-T92-K	TO-92	Α	G	K	Bulk	

Pin Assignment: A: Anode K: Cathode Note: G: Gate - (1)Packing Type (1) B: Tape Box, K: Bulk (2)Package Type (2) T92: TO-92 (3)Green Package (3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
Denotitive Deak Ferward Current	100µs Pulse Width, 1% Duty Cycle	-	1	Α	
Repetitive Peak Forward Current	20µs Pulse Width, 1% Duty Cycle	I _{TRM}	2	Α	
Non-Repetitive Peak Forward Current	10µs Pulse Width	I _{TSM}	5	Α	
DC Forward Anode Current		I _T	200	mA	
Derate Above 25°C			2	mA/°C	
DC Gate Current		I_G	±20	mA	
Gate to Cathode Forward Voltage		V_{GKF}	40	V	
Gate to Cathode Reverse Voltage		V_{GKR}	5	V	
Gate to Anode Reverse Voltage		V_{GAR}	40	V	
Anode to Cathode Voltage		V_{AK}	±40	V	
Forward Power Dissipation	T _A =25°C	P_F	250	mW	
Derate Above 25°C		$1/\theta_{JA}$	2.5	mW/°C	
Operating Junction Temperature	T_J	-65 ~ + 125	°C		
Storage Junction Temperature		T_{STG}	-65 ~ +200	°C	

Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

DADAMETED	CVMDOL	TECT CONDITIONS	N ALN I	TVD	NAAV	LINIT
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Offset Voltage	\/ ₊	$V_S=10V$, $R_G=1M\Omega$	0.2	0.70	1.6	V
Oliset Voltage		V_S =10V, R_G =10k Ω	0.2	0.35	0.6	V
Gate to Anode Leakage Current	1 1040	V _S =40V, T _A =25°C, Cathode Open		1	5	nA
		V _S =40V, T _A =75°C, Cathode Open		30	75	nA
Gate to Cathode Leakage Current	I _{GKS}	V _S =40V, Anode to Cathode		5	50	nA
		Shorted		5		
Peak Current	l ln	V_S =10V, R_G =1M Ω		1.25	2	μΑ
		V_S =10V, R_G =10k Ω		4	5	μΑ
Valley Current	I _V	V_S =10V, R_G =1M Ω		18	50	μΑ
		V_S =10V, R_G =10k Ω	70	270		μΑ
Forward Voltage	V_{F}	I _F =50mA Peak	•	0.8	1.5	V
Peak Output Voltage	Vo	V _B =20V, C _C =0.2μF	6	16		V
Pulse Voltage Rise Time	t_R	V _B =20V, C _C =0.2μF	•	40	80	ns

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.