UNISONIC TECHNOLOGIES CO., LTD

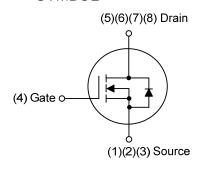
UTM3052-H

Preliminary

POWER MOSFET

62A, 30V N-CHANNEL FAST SWITCHING MOSFET

■ DESCRIPTION


The UTC **UTM3052-H** is a N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with a minimum on-state resistance and low gate charge.

The UTC **UTM3052-H** is suitable for load switch and networking DC-DC power system, etc.

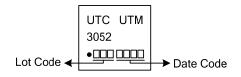
■ FFATURES

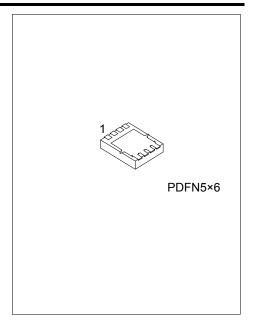
- * $R_{DS(ON)} \le 8.0 \text{ m}\Omega$ @ $V_{GS}=10V$, $I_{D}=30A$
- * Super low gate charge

■ SYMBOL

■ ORDERING INFORMATION

Note: Pin Assignment: G: Gate


Ordering Number		Dookogo	Pin Assignment							Daakina	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UTM3052L-P5060-R	UTM3052G-P5060-R	PDFN5×6	S	S	S	G	D	D	D	D	Tape Reel


UTM3052G-P5060-R
(1)Packing Type
(1) R: Tape Reel
(2) P5060: PDFN5×6
(3) Green Package
(3) G: Halogen Free and Lead Free, L: Lead Free

S: Source

D: Drain

MARKING

<u>www.unisonic.com.tw</u> 1 of 4

ABSOLUTE MAXIMUM RATING

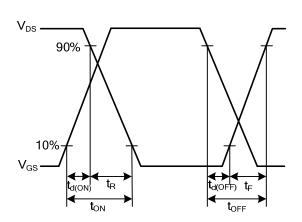
PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage			V_{GSS}	±20	V
Drain Current		V _{GS} =10V, T _C =25°C (Note 2, 6)		62	Α
	Continuous	V _{GS} =10V, T _C =100°C (Note 2)		40	Α
	Continuous	V _{GS} =10V, T _A =25°C (Note 2)	l _D	13.1	Α
		V _{GS} =10V, T _A =70°C (Note 2)		10.5	Α
	Pulsed (Not	e 3)	I _{DM}	150	Α
Avalanche Energy Single Pulse (Note 4)			E _{AS}	69	mJ
Avalanche Current			I _{AS}	37	Α
Total Power Dissipation		T _C =25°C	0	46.3	W
(Note 5)		T _A =25°C	- P _D	2	W
Operating Junction Temperature Range			TJ	-55 ~ +150	°C
Storage Temperature Range			T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

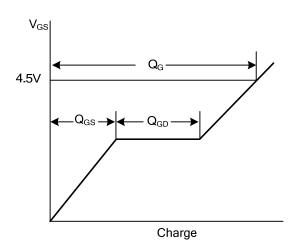
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. The data tested by surface mounted on a 1 inch² FR-4 board with 2 OZ copper
- 3. The data tested by pulsed, pulse width \leq 300 μ s; duty cycle \leq 2%
- 4. The EAS data shows Max. rating. The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =37A
- 5. The power dissipation is limited by 150°C junction temperature
- 6. Package limitation current is 85A

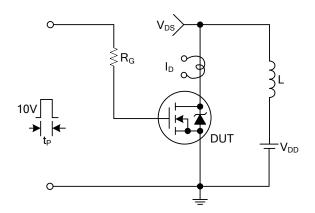
■ THERMAL RESISTANCE (Note 2)

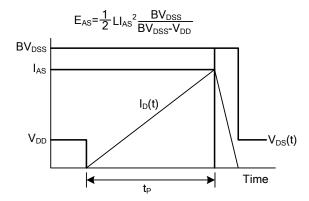

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62	°C/W
Junction to Case	θјς	2.7	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							,
Drain-Source Breakdown Voltage		BV_{DSS}	I_D =250 μ A, V_{GS} =0 V	30			V
Breakdown Voltage Temperature Coefficient		$\Delta BV_{DSS}/\Delta T_{J}$	Reference to 25°C, I _D =1mA		0.01		V/°C
Drain-Source Leakage Current			V _{DS} =24V, V _{GS} =0V, T _J =25°C			1	μΑ
		I _{DSS}	V _{DS} =24V, V _{GS} =0V, T _J =55°C			5	μΑ
Gate-Source Leakage Current	Forward	I _{GSS}	V _{GS} =20V, V _{DS} =0V			100	nA
Rev	erse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS	· ·						-ā
Static Drain-Source On-State Resi	Static Drain-Source On-State Resistance		V_{GS} =10V, I_D =30A		6.4	8.0	mΩ
(Note 2)		$R_{DS(ON)}$	V _{GS} =4.5V, I _D =15A		10	12.5	mΩ
Gate Threshold Voltage		$V_{GS(TH)}$	\\ -\\ -250\	1.2	1.5	2.5	V
V _{GS(TH)} Temperature Coefficient		$\Delta V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$		-3.1		mV/°C
Forward Transconductance		g FS	V_{DS} =5V, I_D =30A		41		S
DYNAMIC PARAMETERS							
Input Capacitance	ut Capacitance				600		pF
Output Capacitance		C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		120		pF
Reverse Transfer Capacitance	verse Transfer Capacitance				70		Pf
Sate Resistance		R_G	V _{GS} =0V, V _{DS} =0V, f=1.0MHz		3.9	5.8	Ω
SWITCHING PARAMETERS							
otal Gate Charge		Q_{G}	1 44 1/ 201/1/ 401/		60		nC
Gate to Source Charge		Q_GS	I _D =1A, V _{DS} =30V, V _{GS} =10V		1.0		nC
Gate to Drain ("Miller") Charge		Q_GD	I _G =100μA		5.5		nC
Turn-ON Delay Time		t _{D(ON)}			20		ns
Rise Time	ise Time		V_{DD} =30V, I_{D} =0.5A, R_{G} =25 Ω		48		ns
Turn-OFF Delay Time			V _{GS} =10V		165		ns
Fall Time		$rac{t_{D(OFF)}}{t_{F}}$			170		ns
GUARANTEED AVALANCHE CHA	RACTI	ERISTICS			•		
Single Pulse Avalanche Energy (No	te 3)	E _{AS}	V _{DD} =25V, L=0.1mH, I _{AS} =30A	45			mJ
DIODE CHARACTERISTICS	•						
Continuous Source Current (Note 1, 4)		Is	\\ -\\ -0\\ Fare 0:			62	Α
Pulsed Source Current (Note 2, 4)		I _{SM}	V _G =V _D =0V, Force Current			150	Α
Diode Forward Voltage (Note 2)		V _{SD}	T _J =25°C, I _S =1A, V _{GS} =0V			1	V
Notes: 1. The data tested by surface							

- Notes: 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2 OZ copper
 - 2. The data tested by pulsed, pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$
 - 3. The Min. value is 100% EAS tested guarantee
 - 4. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation


■ TEST CIRCUITS AND WAVEFORMS


Resistive Switching Waveforms

Gate Charge Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.