

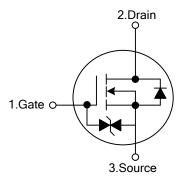
UTC UNISONIC TECHNOLOGIES CO., LTD

4N90Z

Preliminary

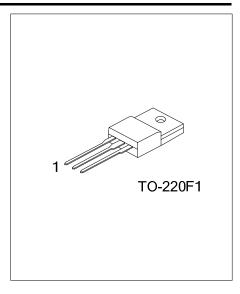
4.0 Amps, 900 Volts **N-CHANNEL POWER MOSFET**

DESCRIPTION

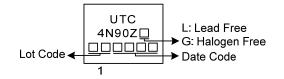

The UTC 4N90Z is a N-channel enhancement MOSFET adopting UTC's advanced technology to provide customers with DMOS, planar stripe technology. This technology is designed to meet the requirements of the minimum on-state resistance and perfect switching performance. It also can withstand high energy pulse in the avalanche and communication mode.

The UTC 4N90Z is particularly applied in high efficiency switch mode power supplies.

FEATURES


- * $R_{DS(ON)} \le 2.2 \Omega @ V_{GS}=10V, I_D=2.0A$
- * High switching speed
- * 100% avalanche tested
- * Improved dv/dt capability
- * With ESD Protected

SYMBOL -



ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			Decking	
Lead Free	Lead Free Halogen Free		1	2	3	Packing	
4N90ZL-TF1-T	N90ZL-TF1-T 4N90ZG-TF1-T		G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							
4N90ZG-TF1-T (1)Packing Type (2)Package Type		(1) T: Tube (2) TF1: TO-220F1 (3) G: Halogen Free and Lead Free, L: Lead Free					

MARKING

ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain to Source Voltage		V _{DSS}	900	V	
Gate to Source Voltage		V _{GSS}	±20	V	
Avalanche Current (Note 2)		I _{AR}	4	А	
Continuous Drain Current	Continuous	ID	4	А	
	Pulsed (Note 2)	I _{DM}	16	А	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	380	mJ	
	Repetitive (Note 2)	E _{AR}	14	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	V/ns	
Power Dissipation ($T_c=25^{\circ}C$)		n	38	W	
Derate above 25°C		PD	0.304	W/°C	
Operating Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature

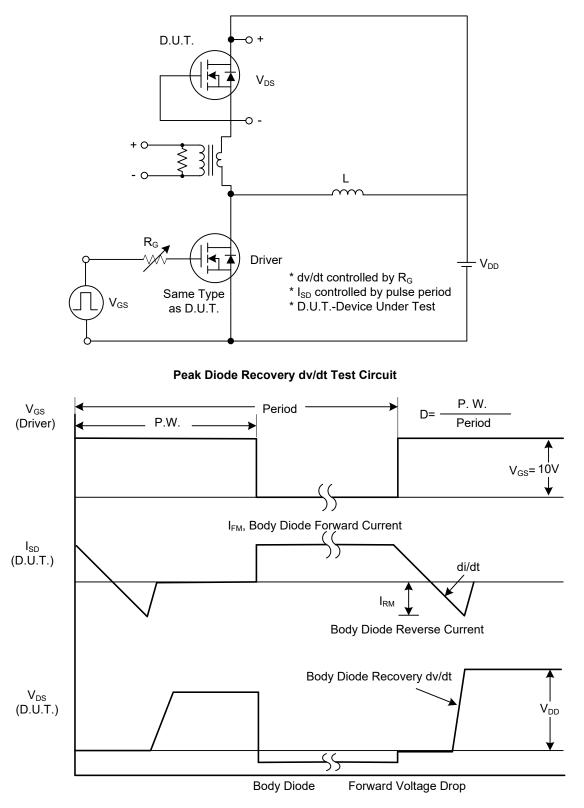
3. L = 48mH, I_{AS} = 4.0A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

4. I_{SD} \leq 4.0A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ _{JA}	62.5	°C/W	
Junction to Case	θις	3.25	°C/W	

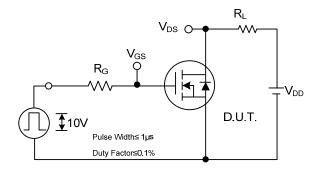
■ ELECTRICAL CHARACTERISTICS (Tc=25°C, unless otherwise specified)


PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V, I _D =250µA	900			V
Breakdown Voltage Temperature Coefficient		$\Delta BV_{DSS}/\Delta T_{J}$	I _D =250µA, Referenced to 25°C		1.05		V/°C
Drain-Source Leakage Current		I _{DSS}	V _{DS} =900V, V _{GS} =0V			10	μA
			V _{DS} =720V, T _C =125°C			100	μA
Gate- Source Leakage Current	Forward	I _{GSS} V _{GS} =+20V, V _{DS} =0V				+5	μA
	Reverse	I _{GSS} V _{GS} =-20V, V _{DS} =0V				-5	μA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	3.0		5.0	V
Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =2.0A			2.2	Ω
DYNAMIC PARAMETERS							
Input Capacitance		CISS	V _{DS} =25V,V _{GS} =0V,f=1.0MHz		1000	1400	pF
Output Capacitance		Coss			49	85	pF
Reverse Transfer Capacitance		C _{RSS}			13	18	pF
SWITCHING PARAMETERS							
Total Gate Charge		Q _G			33		nC
Gate-Source Charge		Q _{GS}	V _{DS} =50V, V _{GS} =10V, I _D =1.3A		9.0		nC
Gate-Drain Charge		Q _{GD}	(Note 1,2)		9.5		nC
Turn-ON Delay Time		t _{D(ON)}			70		ns
Turn-ON Rise Time		t _R	V _{DD} =30V, I _D =0.5A, R _G =25Ω		120		ns
Turn-OFF Delay Time		t _{D(OFF)}	(Note 1,2)		170		ns
Turn-OFF Fall Time		t _F			90		ns
SOURCE- DRAIN DIODE RATII	NGS AND C	HARACTERI	STICS	•			
Maximum Body-Diode Continuous Current		ls				4	Α
Maximum Body-Diode Pulsed Current		Ism				16	А
Drain-Source Diode Forward Voltage		Vsd	Is =4.0A, V _{GS} =0V			1.4	V
Neters 4. Dules Tests Dules wight					•	•	

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

2. Essentially independent of operating temperature.

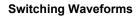
TEST CIRCUITS AND WAVEFORMS

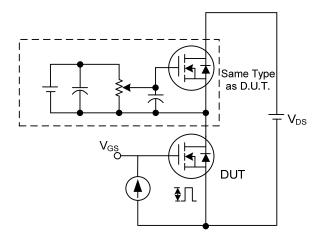


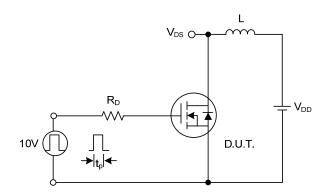

 V_{GS}

10V

Q_{GS}

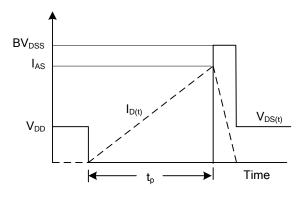

TEST CIRCUITS AND WAVEFORMS


Switching Test Circuit



 Q_G

 Q_{GD}


Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

Gate Charge Waveform

Charge

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

