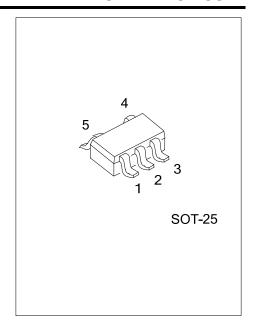
UNISONIC TECHNOLOGIES CO., LTD

Preliminary

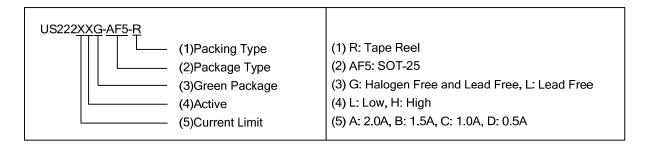

LINEAR INTEGRATED CIRCUIT

0.5A TO 2.0A HIGH-SIDE POWER DISTRIBUTION **SWITCHES**

DESCRIPTION

The UTC US222 are low voltage cost-effective high-side power switches with flag function. These devices are particularly suitable for self-powered and bus-powered USB applications. The build-in N-MOSFET's $R_{\text{DS}(\text{ON})}$ which meets the requirements of USB voltage drop is as low as 85 m Ω .

The UTC **US222** contains a charge pump circuitry to drive the internal MOSFET switch and also incorporate such protection circuits: soft-start circuit protect these devices from being damaged by limiting inrush current during plug-in; thermal shutdown circuit is used to prevent catastrophic switch failure from high-current loads. UVLO is used to ensure that the device remains off unless there is a valid input voltage present. A flag output is designed to indicate fault conditions to the local USB controller.

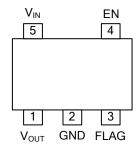

FEATURES

- * Low MOSFET On Resistance: 85mΩ
- * Compliant to USB Specifications
- * Available 4 Versions of Continuous Load: 0.5A/1.0A/1.5A/2.0A
- * Logic Level Enable Pin: Available with Active-high or Active-low * Load Short Protection with Fold-back
- * Low Supply Current: 68µA (Typ.)
- * Low Shutdown Current: 1.0µA (Max)
- * Soft Start-up

- * Under-voltage Lockout
- * Over-current Protection
- * Over Temperature Protection
- * Deglitched FLAG Output with Open Drain
- * No Reverse Current When Power Off
- * With Output Shutdown Pull-low Resistor

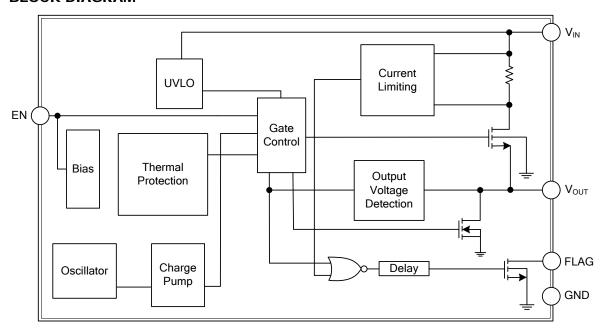
ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
US222XXL-AF5-R	US222XXG-AF5-R	SOT-25	Tape Reel	



www.unisonic.com.tw 1 of 4

MARKING


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{OUT}	Switch output voltage
2	GND	Ground
3	FLAG	Fault flag pin, output with open drain, need a pull-up resistor in application, active low to indicate OCP or OTP
4	EN	Chip enable control input, active low or high
5	V _{IN}	Supply input pin

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

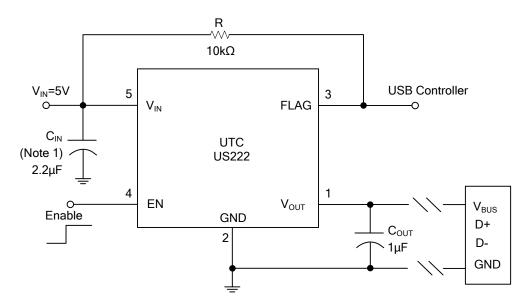
PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V_{IN}	6.0	V
Operating Junction Temperature Range	T_J	150	°C
Storage Temperature Range	T_{STG}	-65~+150	°C
Lead Temperature (Soldering, 10sec)	T_LEAD	260	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V _{IN}			5.5	V
Operating Ambient Temperature Range	T _A	-40		85	°C

THERMAL DATA


PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	300	°C/W

ELECTRICAL CHARACTERISTICS

(V_{IN}=5.0V, C_{IN}=2.2 μ F, C_{OUT}=1.0 μ F, Typical T_A=25 $^{\circ}$ C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{IN}				5.5	V
Switch On Resistance	R _{DS(ON)}	V _{IN} =5.0V, I _{OUT} =0.5A		85	110	mΩ
Supply Current	I _{SUPPLY}	V _{IN} =5.0V, No Load		68	95	μΑ
	l=	US222AL/AH (2.0A), V _{OUT} =4.0V	2.1	2.7	3.6	Α
Current Limit		US222BL/BH (1.5A), V _{OUT} =4.0V	1.6	2.0	2.8	Α
Current Limit	I _{LIMIT}	US222CL/CH (1.0A), V _{OUT} =4.0V	1.1	1.5	2.1	Α
		US222DL/DH (0.5A) , V _{OUT} =4.0V	0.6	1.0	1.4	Α
Fold-back Short Current	I _{SHORT}	US222A/B/C/D, V _{OUT} =0V		1.0		Α
Shutdown Supply Current	I _{SHUTDOWN}	Chip Disable, Shutdown Mode		0.1	5.0	μΑ
Enable High Input Threshold	V_{ENH}		2.0			V
Enable Low Input Threshold	V_{ENL}				8.0	V
Enable Pin Input Current	I _{EN}	Force 0V to 5.0V at EN Pin	-1.0		1.0	μΑ
Under Voltage Lockout Threshold Voltage	V_{UVLO}	V _{IN} Increasing from 0V		2.5		V
Under Voltage Hysteresis	V _{UVLOHY}			0.2		V
Output Pull Low Resistance after Shutdown	RDISCHARGE			100		Ω
Output Turn-on Time	t _{ON}	From Enable Active to 90% of Output		400		μs
FLAG Pin Delay Time	t _{DFLG}	From Over Current Fault Condition to Flag Active		12		ms
FLAG Pin Low Voltage	V_{FLG}	I _{SINK} =1.0mA		35		mV
FLAG Pin Leakage Current	I _{LEAKAGE}	FLAG Disable, Force 5.0V			1.0	μΑ
Thermal Shutdown Temperature	T _{OTSD}			150		°C
Thermal Shutdown Hysteresis	T _{HYOTSD}			30		°C

■ TYPICAL APPLICATION CIRCUIT

Note: 2.2µF input capacitor is enough in most application cases.

If the V_{OUT} is short to ground frequently during usage, large size input capacitor is necessary, recommend $22\mu F$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.