

UTC UNISONIC TECHNOLOGIES CO., LTD

UU28121

1.2MHz, HIGH VOLTAGE, **BOOST CONVERTER**

DESCRIPTION

The UTC UU28121 is a current mode step up converter intended for small, low power applications.

The converter input voltage ranging from 2.5V to 5.5V. The Output voltage can be set up to 28V. The frequency is 1.2MHz allows the use of small external inductors and capacitors and provides fast transient response. Internal soft start results in small inrush current and extends battery life. Internal power MOSFET with very low RDS (ON) provides high efficiency. The UTC UU28121 automatically transits from PWM to PFM during light load condition further increasing efficiency. The converter also provides protection functions such as under-voltage lockout, current limit and thermal shutdown.

FEATURES

- * 2.5V~5.5V operating input voltage range
- * 1.2MHz Fixed Switching Frequency
- * Adjustable output voltage range up to 28V
- * Internal 1.2A switching current limit
- * Internal Soft-start Function
- * Current limit and Thermal shutdown protection
- * Under voltage Lockout

ORDERING INFORMATION

Ordering Number		Dookogo	Dealing	
Lead Free	Halogen Free	Раскаде	Packing	
UU28121L-AF5-R	UU28121G-AF5-R	SOT-25	Tape Reel	

MARKING

CMOS IC

UU28121

■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	SW	Switching Pin.
2	GND	Ground Pin.
3	FB	Feedback Pin.
4	EN	Chip Enable & Dimming pin. Active high. Internal pull low.
5	Vcc	V _{CC} Input Pin.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
V _{CC} Pin Voltage	VIN	6.5	V
SW Pin Voltage	Vsw	30	V
EN, FB Pins Voltage		V _{IN}	V
Operating Junction Temperature	T _{OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Supply Voltage	VIN	2.5 ~ 5.5	V
Ambient Temperature	TA	-40 ~ +125	°C

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction To Ambient	θ」Α	270	°C/W
Junction to Case	θις	110	°C/W

Note: θ_{JA} is measured with the PCB copper are (need connect to GND of the UTC UU28121) of approximately 1 in² (Multi-layer).

ELECTRICAL CHARACTERISTICS

(V_{IN}=5V, V_{EN}=5V, I_{OUT}=20mA, T_A=25°C, unless otherwise specified)

		, , ,				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range	V _{IN}		2.5		5.5	V
Input UVLO	UVLO	Rising		2.25	2.45	V
UVLO Hysteresis				0.2		V
Step-Up Voltage Adjust Range	Vout		3		28	V
Quiescent Current	Iccq	I _{OUT} =0mA, V _{FB} =1.5V		150	250	μA
Shutdown Current	Isd	V _{EN} =0V		1	4	μA
FB Pin Voltage	V _{FB}		1.213	1.238	1.263	V
FB Pin Current	IFB	V _{FB} =1.3V			±100	nA
Line Regulation		V _{IN} =2.5~5.5V, I _{OUT} =20mA		0.2		%
Load Regulation		V _{IN} =5V, I _{OUT} =1mA~400mA		0.2		%
Switching Frequency	Fosc		900	1200	1500	KHz
Maximum Duty	DMAX		87	90		%
N-Channel MOSFET Current Limit	I _{LIM}	Duty=50%		1.6		Α
MOSEET On registering	_	V _{CC} =3V, I _{SW} =1A		600		
MOSFET On-resistance	RDS(on)	V _{CC} =5V, I _{SW} =1A		500		111(2
SW Leakage Current	IswL	Vsw=28V, V _{FB} =1.5V			1	μA
EN High-level Input Voltage	VIH		1.4			V
EN Low-level Input Voltage	VIL				0.4	V
EN Hysteresis	Hys			200		mV
Thermal Shutdown	T _{DS}			150		°C
Thermal Shutdown Hysteresis	Т _{SH}			35		°C

■ FUNCTION DESCRIPTION

Setting the Output Voltage

Application circuit item shows the basic application circuit with UTC **UU28121** adjustable output version. The external resistor sets the output voltage according to the following equation:

$$V_{OUT}=1.238V \times (1+\frac{R1}{R2})$$

V _{OUT} (V)	R1(kΩ)	R2(kΩ)
12	470	54
16	470	39
24	720	39
27	750	36

Table 1. Resistor Selection for Common Output Voltages

For most applications, R1 is a suggested a value by $300K \approx 850K\Omega$. Place the resistor-divider as close to the IC as possible to reduce the noise sensitivity.

Under Voltage Lockout (UVLO)

To avoid mis-operation of the device at low input voltages an under voltage lockout is included that disables the device, if the input voltage falls below (2.25V~200mV).

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency shall be less than input source impedance to prevent high frequency switching current passing to the input. A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. A 4.7μ F ceramic capacitor for most applications is sufficient. For a lower output power requirement application, this value can be decreased.

Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current. A 2.2uF ceramic capacitors works for most of the applications. Higher capacitor values can be used to improve the load transient response.

TYPICAL APPLICATION CIRCUIT

1. V_{OUT} < 18V

2. $V_{OUT} \ge 18V$

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

