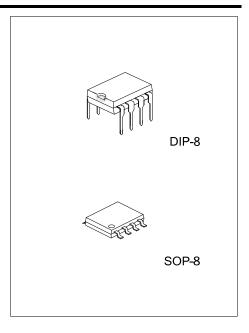
UNISONIC TECHNOLOGIES CO., LTD

UU6047B

Preliminary

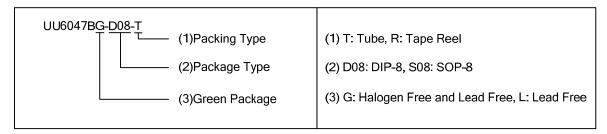
LINEAR INTEGRATED CIRCUIT

REAR WINDOW HEATING TIMER

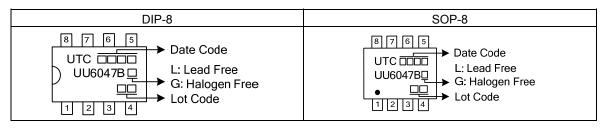

■ DESCRIPTION

The bipolar integrated circuit UTC **UU6047B** is designed as a window heating timer. Due to time controlled functions, they reduce the current consumptions of high loads i.e., heating resistors.

An ON-relay can be switched off after a preset delay time. The relay time can be interrupted manually, whereas a retrigger function is not provided.

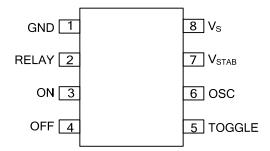

■ FEATURES

- * Delay time range: 3.7s to 20h
- * Relay driver with Z-diode
- * RC oscillator determines switching characteristics
- * Debounced input for toggle switch
- * Two debounced inputs: ON and OFF
- * Load-dump protection
- * RF interference protected
- * Inputs switched to ground



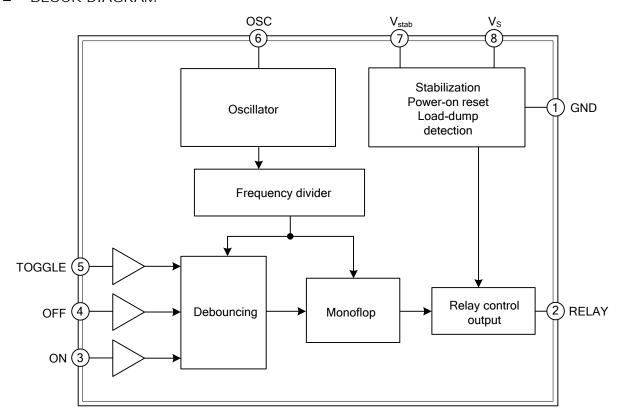
ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
UU6047BL-D08-T	UU6047BG-D08-T	DIP-8	Tube	
UU6047BL-S08-R	UU6047BG-S08-R	SOP-8	Tape Reel	



MARKING

<u>www.unisonic.com.tw</u> 1 of 6


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Ground
2	RELAY	Relay control output
3	ON	Switch-on input
4	OFF	Switch-off input
5	TOGGLE	Toggle input
6	osc	RC oscillator input
7	V_{STAB}	Stabilized voltage
8	Vs	Supply voltage

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Voltage, Static, 5 min	V_{Batt}	24	V
Ambient Temperature Range	T _A	-40 ~ +125	°C
Junction Temperature	T_J	150	°C
Storage Temperature Range	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
TATOWIETER		OTMBOL	101111100	01111	
lunation to Ambient	DIP-8	θ_{JA}	110	°C/W	
Junction to Ambient	SOP-8		160	°C/W	

■ ELECTRICAL CHARACTERISTICS V_{Batt}=13.5V, T_{AMB}=25°C, reference point ground, unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V_{Batt}	R₁≥510Ω	6		16	V
5V Supply	V ₈ , V ₇	Without R ₁ , C ₁ Pins 7 and 8	4.3		6.0	V
Stabilized Voltage	V_7	V _{Batt} =12V, Pin 7		5.0		V
Undervoltage Threshold	Vs	Power on Reset	3.0		4.2	V
Supply Current	Is	All Push Buttons Open, Pin8		1.3	2.0	mA
Internal Z-Diode	V_Z	I ₈ =10mA, Pin 8	13.5	14	16	V
Relay control output (Pin 2)						
Caturation Voltage	V_2	I ₂ =200mA		1.2		V
Saturation Voltage	V ₂	I ₂ =300mA			1.5	V
Leakage Current	I _{Ikg}	V ₂ =14V		2	100	μΑ
Output Current	l ₂				300	mA
Output pulse current						
Internal Z-Diode	V_Z	I ₂ =10mA	20	22	24	V
Oscillator input (f = 0.001~40 kHz,	see table 1	Pin 6)				
Internal Discharge Resistance	R_6	V ₆ =5V	1.6	2.0	2.4	kΩ
Switching Voltage	V_{6L}	Lower	0.9	1.1	1.4	V
Switching voltage	V _{6H}	Upper	2.8	3.1	3.5	V
Input Current	-l ₆	V ₆ =0V			1	μΑ
Switching times						
Debounce Time	t ₃		5		7	cycles
Inputs ON, OFF, TOGGLE (Pins 3,	4 and 5)					
Switching Threshold Voltage	V _{3,4,5}		1.6	2.0	2.4	V
Internal Z-Diode	Vz	I _{3, 4, 5} =10mA	6.5	7.1	8.0	V
Pull-Up Resistance	R _{3,4,5}	V _{3,4,5} =0V		50		kΩ

TYPICAL APPLICATION CIRCUIT

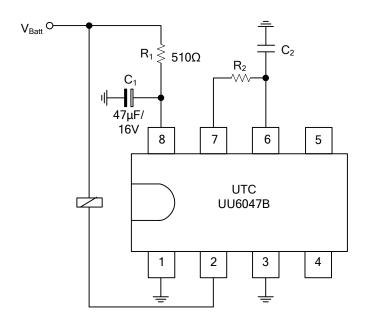


Figure 1. Generation of a monostable delay time, t_{d} , caused by applying the operating voltage V_{Batt} , not externally deactivatable.

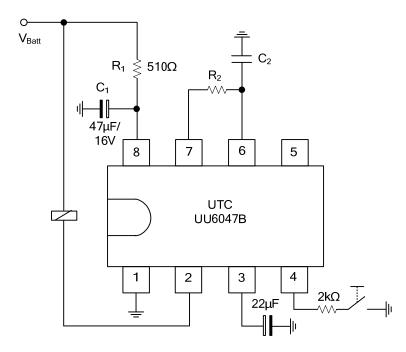


Figure 2. Generation of a monostable delay time, $t_{\rm d}$, by applying the operating voltage $V_{\rm Batt}$, deactivatable by the OFF push-button

■ TYPICAL APPLICATION CIRCUIT (Cont.)

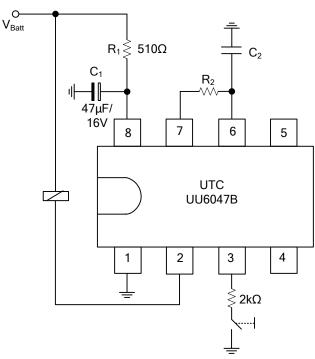


Figure 3. Monostable delay time, t_{d} , can be activated by the ON pushbutton, not externally deactivatable

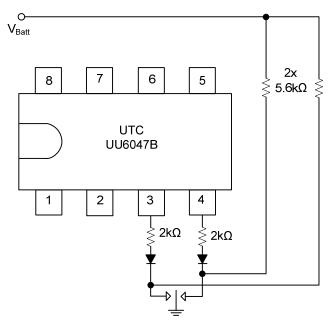


Figure 4. Increasing the contact current by parallel resistors

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

