

UNISONIC TECHNOLOGIES CO., LTD

TL431TV

Preliminary

LINEAR INTEGRATED CIRCUIT

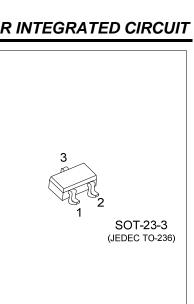
PROGRAMMABLE PRECISION REFERENCE

DESCRIPTION

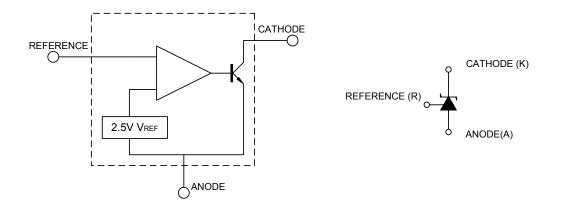
The UTC TL431TV is a three-terminal adjustable regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between V_{REF} (approximately 2.5V) and 36V with two external resistors. It provides very wide applications, including shunt regulator, series regulator, switching regulator, voltage reference and others.

FEATURES

- * Programmable output Voltage to 36V.
- * Low dynamic output impedance 0.2Ω.
- * Sink current capability of 1.0 to 100mA.
- * Equivalent full-range temperature coefficient of 50ppm/°C typical for operation over full rated operating temperature range.


ORDERING INFORMATION

Ordering Number		Dookago	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
TL431TVL-AE2-R	TL431TVG-AE2-R	SOT-23-3	R	K	Α	Tape Reel	
Note: Pin Code: R: Reference K: Cathode A: Anode							


TL431TV <u>G-AE3-R</u> (1)Packing Type (2)Package Type (3)Green Package	(1) R: Tape Reel (2) AE2: SOT-23-3 (3) G: Halogen Free and Lead Free, L: Lead Free
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

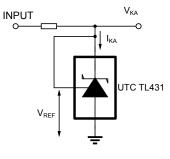
BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies, unless otherwise specified)

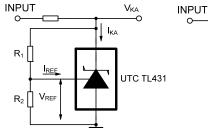
PARAMETER	SYMBOL	RATINGS	UNIT	
Cathode Voltage	V _{KA}	37	V	
Cathode Current Range(Continuous)	I _{KA}	-100 ~ +150	mA	
Reference Input Current Range	I _{REF}	-0.05 ~ +10	mA	
Power Dissipation	PD	300	mW	
Operating Junction	TJ	+150	°C	
Operating Ambient	T _{OPR}	-40 ~ +85	°C	
Storage Temperature	T _{STG}	-65 ~ +150	°C	

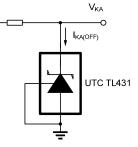
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

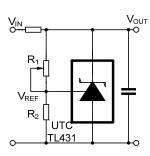

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Cathode Voltage	V _{KA}	V_{REF}		36	V
Cathode Current	KA	1		100	mA

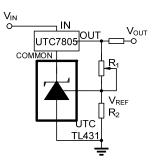
■ ELECTRICAL CHARACTERISTICS (T_c= 25°C, unless otherwise specified.)

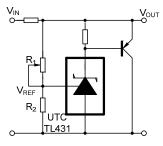

PARAMETER	SYMBOL	TEST CONDITIONS			MIN	TYP	MAX	UNIT	
		V _{KA} =V _{REF} ,I _{KA} =10mA		TL431TV-A	2.483	2.495	2.507	V	
Reference Input Voltage	V _{REF}			TL431TV-1	2.470	2.495	2.520	V	
	V REF			TL431TV-2	2.520	-	2.545	V	
				TL431TV-3	2.445	-	2.470	V	
Deviation of reference Input Voltage Over	ΔVREF	$V_{KA} = V_{REF}, I_{KA} = 10 \text{mA},$ $0^{\circ}C \leq T_A \leq 70^{\circ}C$			VREF V _{KA} =V _{REF} ,I _{KA} =10mA,		4.5		mV
temperature	ΔΤ					4.5		IIIV	
Ratio of Change in Reference Input	ΔVREF	$- I_{\mu} = 10 \text{m}\Delta$		10V~V _{REF}		-1.0	-2.7	mV/V	
Voltage to the Change in Cathode Voltage	ΔVκα			36V~10V		-0.5	-2.0	mV/V	
Reference Input Current	I _{REF}	I _{KA} =10mA, R1=10kΩ, R2=∞				4.0	6.0	μA	
Deviation of Reference Input Current Over	ΔIREF	I _{KA} =10mA, R1=10kΩ, R2=∞,				0.4			
Full Temperature Range	ΔΤ	T _A =full Temperature				0.4		μA	
Minimum Cathode Current for Regulation	I _{KA(MIN)}	V _{KA} =V _{REF}			0.4	0.5	1.0	mA	
Off-State Cathode Current	I _{KA(OFF)}	V _{KA} =36V, V _{REF} =0				0.05	1.0	μA	
Dynamic Impedance	Z _{KA}	V _{KA} =V _{REF} , I _{KA} =1~ 100mA,f≤1.0kHz				0.15	0.5	Ω	


TEST CIRCUIT

For $V_{KA}=V_{REF}$

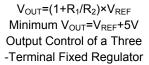

 $V_{KA}=V_{REF}\times(1+R_1/R_2)+I_{REF}\times R_1$ For V_{KA}≥V_{REF}

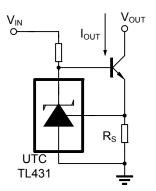



For IKA(OFF)

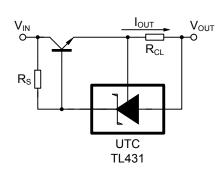
0

APPLICATION CIRCUIT




 $V_{OUT}=(1+R_1/R_2)\times V_{REF}$

Shutdown Regulator



V_{OUT}=(1+R₁/R₂)×V_{REF}

Higher-current Shunt Regulator

 $I_{OUT}=V_{REF}/R_S$ Constant-current Sink

 $I_{OUT} = V_{REF}/R_{CL}$ Current Limiting or Current Source

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

