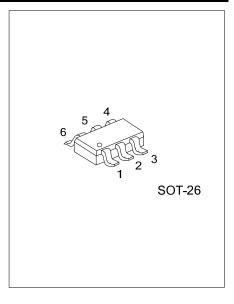


UNISONIC TECHNOLOGIES CO., LTD

UCP0510


Preliminary

CMOS IC

REGULATED CHARGE PUMP

DESCRIPTION

The UTC **UCP0510** Charge Pump is a Micro Power switched-capacitor voltage converter that delivers a regulated output. No external inductor is required for operation. Using three small capacitors, the UTC **UCP0510** can deliver up to 100mA to the voltage regulated output. The UTC **UCP0510** features very low quiescent current and high efficiency over a large portion of its load range making this device ideal for battery-powered applications. Furthermore, the combination of few external components and small package size keeps the total converter board area to a minimum in space restricted applications. The UCP0510 operates in an output-regulated voltage doubling mode. The regulator uses a pulse-skipping technique to provide a regulated output from a varying input supply. The UTC **UCP0510** contains a thermal management circuit to protect the device under continuous output short circuit conditions.

FEATURES

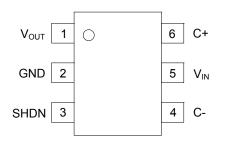
* Step-Up Voltage Converter

- * Input Voltage Range UCP0510-50: 2.7V to 5V UCP0510-45: 2.7V to 4.5V
- * Micro Power consumption: 13 μA
- * Regulated 5V, 4.5V±4% Output
- * 5V Output Current 100mA with $V_{IN} \ge 3.0V$ 50mA with $V_{IN} \ge 2.7V$

ORDERING INFORMATION

- * 4.5V Output Current 100mA with $V_{IN} \ge 3.0V$ 50mA with $V_{IN} \ge 2.7V$
- * Peak Current 250mA for 100ms
- * High Frequency 450 kHz operation
- * Shutdown Mode Draws Less Than 1 µA
- * Short-Circuit/Over-Temperature Protection

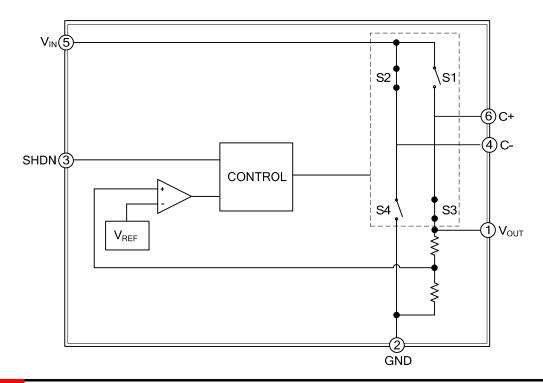
Ordering	Number	Deekege	Dooking	
Lead Free Halogen Free		Package	Packing	
UCP0510G-xx-AG6-R	UCP0510G-xx-AG6-R	SOT-26	Tape Reel	


UCP0510G-xx-AG6-R		
	 (1)Packing Type 	(1) R: Tape Reel
	· (2)Package Type	(2) AG6: SOT-26
	(3)Output Voltage Code	(3) xx: refer to Marking Information
	- (4)Green Package	(4) G: Halogen Free and Lead Free, L: Lead Free

UCP0510

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-26	45: 4.5V 50: 5.0V	$\begin{array}{c} 6 & 5 & 4 \\ \hline P \Box \Box 10 \\ \circ \\ 1 & 2 & 3 \end{array}$ Voltage Code


PIN CONFIGURATION

PIN DISCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{OUT}	Regulated output pin. Bypass this pin to ground with low equivalent series resistance (ESR) capacitor.
2	GND	Ground connection.
3	SHDN	Shutdown input. Active low signal disables the converter.
4	C-	Flying capacitor negative terminal.
5	VIN	Input supply pin. Bypass this pin to ground with low-ESR capacitor.
6	C+	Flying capacitor positive terminal.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Output Voltage	V _{OUT}	-0.3 ~ 6	V
Input Voltage	V _{IN}	-0.3 ~ 6	V
SHDN Voltage	V _{SHDN}	-0.3 ~ 6	V
Operating Junction Temperature Range	TJ	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

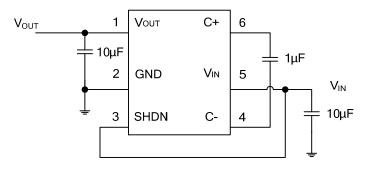
ELECTRICAL CHARACTERISTICS

(V_{IN} = 3.6V, T_A = 25°C, C_{FLY} =1uF, C_{IN} =10uF, C_{OUT} =10uF, unless otherwise specified)

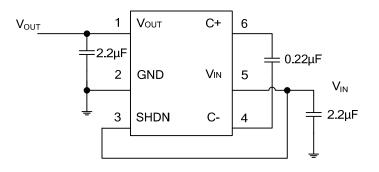
UTC UCP0510-50

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IN}	VIN	V _{OUT} =5.0V	2.7		Vout	V	
Output Voltage	Vout	2.7V <v<sub>IN<5V, I_{OUT}≤ 50mA</v<sub>	4.8	5.0	5.2	V	
		$3.0V < V_{IN} < 5V, I_{OUT} \le 100 \text{mA}$	4.8	5.0	5.2	V	
No Load Supply Current ¹	lq	$2.7V < V_{IN} < 5V, I_{OUT} = 0mA, SHDN = V_{IN}$		25	100	uA	
Shutdown Supply Current	1	2.7V <v<sub>IN<3.6V,I_{OUT}=0mA,SHDN=0</v<sub>		0.01	1	μA	
	I _{SHDN}	3.6V <v<sub>IN<5V,I_{OUT}=0mA,SHDN=0</v<sub>			2.5		
Pipple Veltage	V _{RIPPLE}	V _{IN} =3V,I _{OUT} =50mA		25		m\/	
Ripple Voltage		V _{IN} =3V,I _{OUT} =100mA		30		mV _{P_P}	
Oscillator Frequency	f _{OSC}	Oscillator Free Running		450		KHz	
SHDN Input Threshold High	VIH		1.5			V	
SHDN Input Threshold Low	VIL				0.3	V	
SHDN Input Current High	Ін	SHDN=V _{IN}	-1		1	uA	
SHDN Input Current Low	l _{IL}	SHDN=GND	-1		1	uA	
V _{OUT} Turn-on time	t _{ON}	V _{IN} =3V,I _{OUT} =0mA		0.2		ms	
Short-circuit current ²	I _{SC}	V _{IN} =3V,V _{OUT} =GND,SHDN=3V		300		mA	
Efficiency	η	V _{IN} =2.7V,I _{OUT} = 50mA		83		%	

UTC UCP0510-45


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IN}	V _{IN}	V _{OUT} =4.5V	2.7		V _{OUT}	V	
Output Voltage	V _{OUT}	2.7V <v<sub>IN<4.5V, I_{OUT}≤ 50mA</v<sub>	4.32	4.5	4.68	V	
		3.0V <v<sub>IN<4.5V,I_{OUT} ≤ 100mA</v<sub>	4.32	4.5	4.68	V	
No Load Supply Current ³	lq	2.7V <v<sub>IN<4.5V,I_{OUT}=0mA,SHDN=V_{IN}</v<sub>		25	100	uA	
Shutdown Supply Current		2.7V <v<sub>IN<3.6V,I_{OUT}=0mA,SHDN=0</v<sub>		0.01	1	μA	
	I _{SHDN}	3.6V <v<sub>IN<4.5V,I_{OUT}=0mA,SHDN=0</v<sub>			2.5		
Dipple Veltage	V _{RIPPLE}	V _{IN} =3V,I _{OUT} =50mA		25		m)/	
Ripple Voltage		V _{IN} =3V,I _{OUT} =100mA		30		mV_{P_P}	
Oscillator Frequency	f _{osc}	Oscillator Free Running		450		KHz	
SHDN Input Threshold High	VIH		1.5			V	
SHDN Input Threshold Low	VIL				0.3	V	
SHDN Input Current High	III	SHDN=V _{IN}	-1		1	uA	
SHDN Input Current Low	I_{IL}	SHDN=GND	-1		1	uA	
V _{OUT} Turn-on time	t _{on}	V _{IN} =3V,I _{OUT} =0mA		0.2		ms	
Short-circuit current ²	I _{SC}	V _{IN} =3V,V _{OUT} =GND,SHDN=3V		300		mA	
Efficiency	η	V _{IN} =2.7V,I _{OUT} = 50mA		83		%	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


2. Under short-circuit conditions, the device may enter over temperature protection mode.

3. V_{OUT} is pulled up to 5.0V to prevent switching.

TYPICAL APPLICATION CIRCUIT

⁵V,100mA supply power

5V,60mA supply power

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

