US2236032DB

Preliminary

LINEAR INTEGRATED CIRCUIT

ULTRA SMALL, LOW INPUT VOLTAGE, LOW R_{on}, LOAD SWITCHES

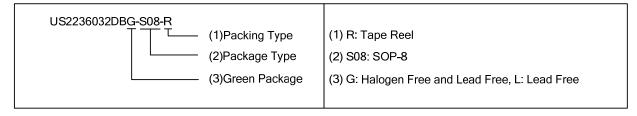
DESCRIPTION

UTC **US2236032DB** is ultra-small, low ON resistance (R_{ON}) load switches with controlled turn on. The devices contain a P-channel MOSFET that operates over an input voltage range of 1.0~3.6V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals.

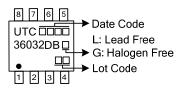
- * Integrated P-Channel Load Switch
- * Input Voltage: 1.0V to 3.6V
- * 1 A Maximum Continuous Switch Current
- * On-Resistance (Typical Values)

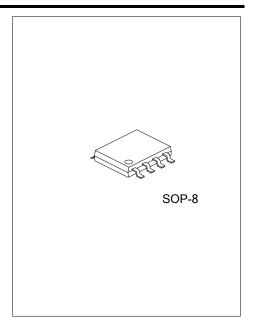
 $R_{ON} = 75 \text{ m}\Omega$ at $V_{IN} = 3.6 \text{V}$

 R_{ON} = 80 m Ω at V_{IN} = 2.5V

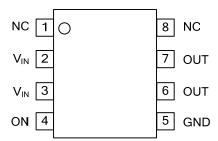

 R_{ON} = 90 m Ω at V_{IN} = 1.8V

 R_{ON} = 112 m Ω at V_{IN} = 1.2V


- * Maximum Quiescent Current = 1 µA
- * Maximum Shutdown Current = 1 μA
- * Low Control Input Thresholds Enable Use of 1.2V, 1.8V, 2.5V and 3.3V Logic
- * Controlled Slew Rate to Avoid Inrush Currents: t_R = 105µs at V_{IN} = 3.6V


ORDERING INFORMATION

Ordering	Number	Dankaga	Packing	
Lead Free	Halogen Free	Package		
US2236032DBL-S08-R	US2236032DBG-S08-R	SOP-8	Tape Reel	


MARKING

<u>www.unisonic.com.tw</u> 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 8	NC	
2, 3	V_{IN}	Switch input, bypass this input with a ceramic capacitor to ground
4	ON	Switch control input, active high
5	GND	Ground
6, 7	V _{OUT}	Switch output

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage Range	V_{IN}	4	V
Output Voltage Range	V_{OUT}	V _{IN} +0.3	V
Input Voltage Range	V_{ON}	4	V
Power Dissipation at T _A =25°C	Р	0.48	W
Maximum Continuous Switch Current for V _{IN} >=1.2V		1	Α
Maximum Continuous Switch Current at V _{IN} =1.0V	I _{MAX}	0.6	Α
Maximum junction Temperature	TJ	+125	°C
Operating Temperature Range	T _{OPR}	-40 ~ +85	°C
Storage Temperature Range	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	205	°C/W

■ RECOMMENDED OPERATING CONDITIONS

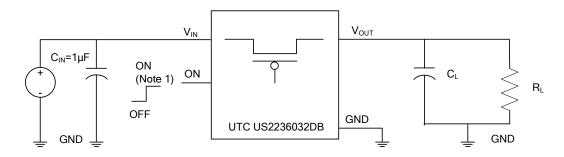
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Input Voltage Range	V_{IN}	1.0		3.6	V
ON Voltage Range	V_{ON}	0		3.6	V
Output Voltage Range	V_{OUT}			V_{IN}	
High-Level Input Voltage, ON	V_{IH}	0.85		3.6	V
Low-Level Input Voltage, ON	V _{IL}			0.4	V
Input Capacitor	C _{IN}	1.0			μF

Note: Refer to application section.

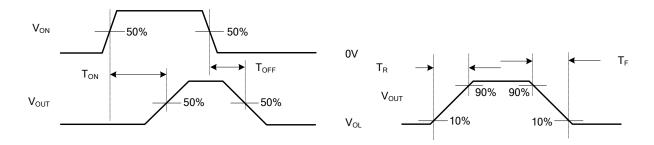
■ ELECTRICAL CHARACTERISTICS

Unless otherwise noted the specification applies over the operating ambient temp T_A =25°C. Typical values are for V_{IN} =3.6V, and T_A =25°C unless otherwise noted.

V_{IN} =3.6V, and I_A =25°C unless of	nerwise noted	L.		-	ā		
PARAMETER	SYMBOL	TEST CONDITIONS MIN		MIN	TYP	MAX	UNIT
POWER SUPPLIES AND CURR	ENTS						
Quiescent Current	I _{IN}	I _{OUT} =0, V _{IN} =V _{ON}			0.19	1	μA
OFF-State Supply Current	I _{IN (OFF)}	V _{ON} =0V, V _{OUT} =0	pen		0.12	1	μA
OFF-State Supply Current	I _{IN (LEAK)}	V _{ON} =0V, V _{OUT} =0	V		0.12	1	μΑ
ON Pin Input Leakage Current	I _{ON}	V _{ON} =1.1V~3.6V	V _{ON} =1.1V~3.6V		0.01	1	μΑ
RESISTANCE AND SWITCH CH	HARACTERIS'	TICS					
			V _{IN} =3.6V		75	115	
			V _{IN} =2.5V		80	120	
ON-State Resistance	Ron	I _{OUT} =-200mA	V _{IN} =1.8V		90	130	mΩ
			V _{IN} =1.2V		112	155	
			V _{IN} =1.0V		160	200	
Output Pulldown Resistance	R _{PD}	$V_{IN} = 3.3 V, V_{ON} = 0$, I _{OUT} =30mA		80	100	Ω

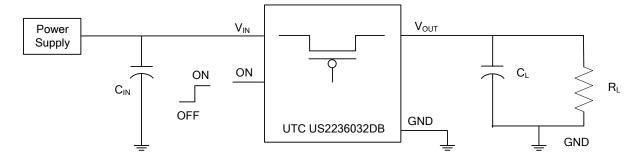

■ SWITCHING CHARACTERISTICS (V_{IN}=3.6V, T_A=25°C unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Turn-ON Time	T_{ON}	$R_L=10\Omega$, $C_L=0.1\mu F$		110		
Turn-OFF Time	T_{OFF}	$R_L=10\Omega$, $C_L=0.1\mu F$		10		
V _{OUT} Rise Time	T_R	$R_L=10\Omega$, $C_L=0.1\mu F$		105		μs
V _{OUT} Fall Time	T _F	$R_L=10\Omega$, $C_L=0.1\mu F$		15		



■ TEST CIRCUIT AND T_{ON}/T_{OFF} WAVEFORMS

TEST CIRCUIT



T_{ON}/T_{OFF} WAVEFORMS

Note 1. Rise and fall times of the control signal is 100ns.

■ TYPICAL APPLICATION CIRCUIT

APPLICATION INFORMATION

ON/OFF Control

The ON pin controls the state of the switch. Activating ON continuously holds the switch in the on state so long as there is no fault. ON is active-high and has a low threshold, making it capable of interfacing with low voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2V, 1.8V, 2.5V or 3.3V GPIOs.

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1.0 μ F ceramic capacitor, C_{IN} , place close to the pins is usually sufficient. Higher values of C_{IN} can be use to further reduce the voltage drop during high current application. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor, this in order to avoid excessive voltage drop.

Output Capacitor

Due to the integral body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.