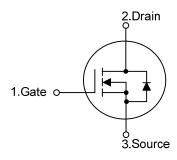
UNISONIC TECHNOLOGIES CO., LTD

UNA15R090H POWER MOSFET

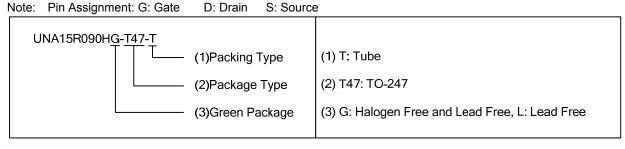
171A, 150V N-CHANNEL ENHANCEMENT MODE TRENCH POWER MOSFET

■ DESCRIPTION

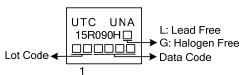

The UTC **UNA15R090H** is a N-channel enhancement mode power MOSFET using UTC's advanced technology to provide customers with ideal for low voltage inverter applications.

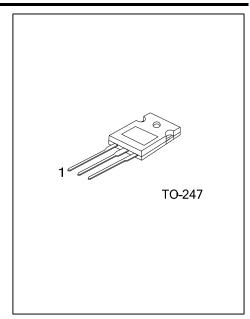
The UTC **UNA15R090H** is suitable for high efficiency synchronous rectification in SMPS, UPS, hard switched and high frequency circuits.

■ FEATURES


- * $R_{DS(ON)}$ < 9.0 m Ω @ V_{GS} =10V, I_D =120A
- * High Cell Density Trench Technology
- * High Power and Current Handling Capability

■ SYMBOL




ORDERING INFORMATION

Ordering Number		Doolsons	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UNA15R090HL-T47-T	UNA15R090HG-T47-T	TO-247	G	D	S	Tube	

MARKING

<u>www.unisonic.com.tw</u> 1 of 5

UNA15R090H Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

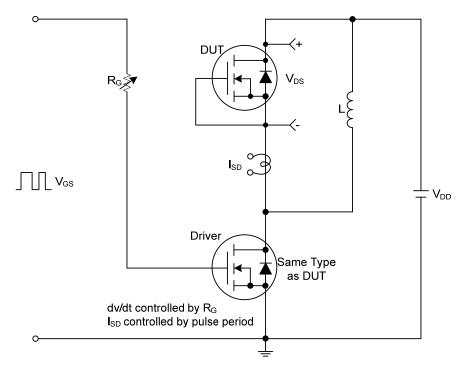
PARAM	SYMBOL	RATINGS	UNIT		
Drain-Source Voltage		V_{DSS}	150	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Continuous Drain Current	Continuous	I _D	171	Α	
Pulsed Drain Current	Prain Current Pulsed (Note 2)		684	Α	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	18.5	V/nS	
Power Dissipation		P_{D}	517	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature Range		T _{STG}	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

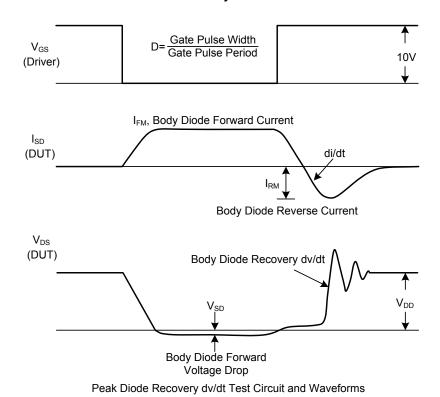
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. I_{SD} $\leq 103 A, \; di/dt \leq 200 A/\mu s, \; V_{DD} \leq V_{(BR)DSS}, \; T_J = 25 ^{\circ} C.$

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	40	°C/W	
Junction to Case	θ _{JC}	0.29	°C/W	

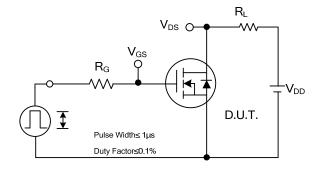

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

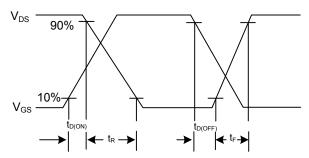
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV_{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	150			V		
Drain-Source Leakage Current		I _{DSS}	V _{DS} =150V, V _{GS} =0V			1	μΑ		
Gate-Source Leakage Current	Forward	1	V_{GS} =+30V, V_{DS} =0V			+100	nA		
	Reverse	I _{GSS}	V_{GS} =-30V, V_{DS} =0V			-100	nA		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.5		3.5	V		
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =120A			9.0	mΩ		
DYNAMIC PARAMETERS									
Input Capacitance	put Capacitance				20700		pF		
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		1510		pF		
Reverse Transfer Capacitance		C_{RSS}			445		pF		
SWITCHING PARAMETERS									
Total Gate Charge (Note 1)		Q_G	V _{DS} =120V, V _{GS} =10V,		320		nC		
Gate to Source Charge		Q_{GS}	I _D =37.5A (Note 1, 2)		98		nC		
Gate to Drain Charge		Q_GD	1D-07.0A (NOIC 1, 2)		74		nC		
Turn-on Delay Time (Note 1)		t _{D(ON)}			45		ns		
Rise Time		t _R	V_{DS} =75V, V_{GS} =10V, I_{D} =37.5A		42		ns		
Turn-off Delay Time		t _{D(OFF)}	R _G =4.7Ω (Note 1, 2)		235		ns		
Fall-Time		t_{F}			137		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Maximum Body-Diode Continuous Current		Is				171	Α		
Maximum Body-Diode Pulsed Current		I _{SM}				684	Α		
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	I _S =103A, V _{GS} =0V			1.3	V		
Reverse Recovery Time (Note 1)		t _{rr}	I _S =30A, V _{GS} =0V,		108		nS		
Reverse Recovery Charge		Q_{rr}	di/dt=100A/μS		448		nC		


Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.

2. Essentially independent of operating temperature.

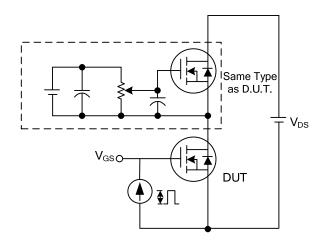
TEST CIRCUITS AND WAVEFORMS

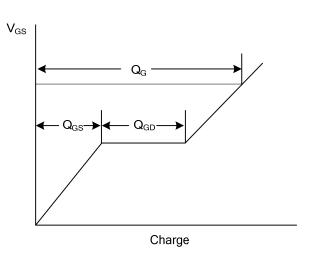

Peak Diode Recovery dv/dt Test Circuit



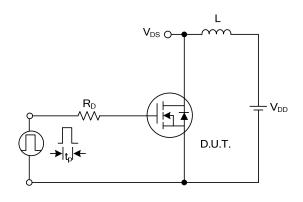
Peak Diode Recovery dv/dt Waveforms

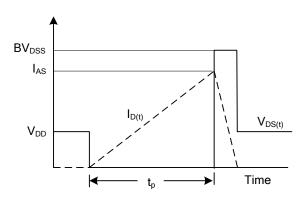
UNA15R090H Power MOSFET


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

