

UTC UNISONIC TECHNOLOGIES CO., LTD

US210AD

Preliminary

CMOS IC

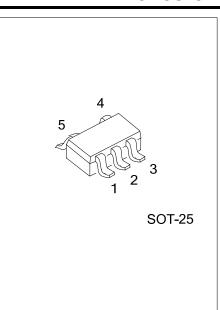
PRECISION ADJUSTABLE **CURRENT-LIMITED POWER-DISTRIBUTION** SWITCHES

DESCRIPTION

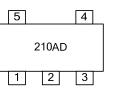
The UTC US210AD is a cost-effective, low voltage, single P-MOSFET load switch. It is intended for applications where precision current limiting is required or heavy capacitive loads and short-circuits are likely to be encountered. This device offers a programmable current-limit threshold by an external resistor from SET to ground.

The UTC US210AD device limits the output current to a safe level by switching into a constant-current mode when the output load exceeds the current-limit threshold. It also provides for a reverse-voltage protection which can disable the power-switch in the event that the output voltage is driven higher than the input to protect devices on the input side of the switch.

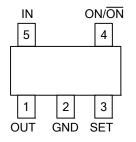
The $R_{DS(ON)}$ of the MOSFET switch is as low as 160m Ω .


FEATURES

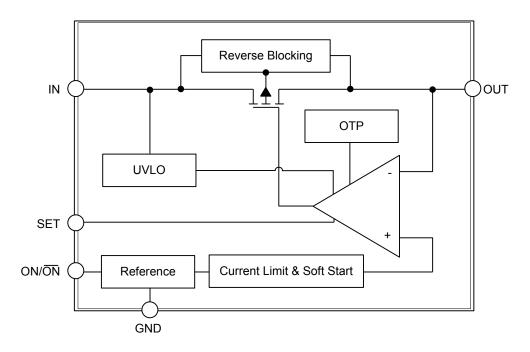
- * Operating range: 2.7V~5.5V
- * High-side MOSFET: 160mΩ (TYP.)
- * Quiescent supply current: 25µA(TYP.)
- * Standby supply current: 1µA (Max.)
- * 1A Continuous Output Current* Programmable current limit, 1A(TYP.)
- * Reverse input-output voltage protection
- * Built-in soft-start
- * Under-voltage Lockout


ORDERING INFORMATION

Ordering Number		Daakaga	Decking	
Lead Free	Halogen Free	Package	Packing	
US210ADG-AF5-R US210ADG-AF5-		SOT-25	Tape Reel	


US210AD <u>G-AF5-R</u> (1)Packing Type (2)Package Type (3)Green Package	(1) R: Tape Reel (2) AF5: SOT-25 (3) G: Halogen Free and Lead Free, L: Lead Free
--	--

MARKING


■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT	Power-switch output.
2	GND	Ground connection; connect externally to Power PAD
3	SET	External resistor used to set current-limit threshold; recommended $6.8 \text{k}\Omega$
4	ON/ ON	Enable input, logic high turns on power switch
5	IN	Power Input.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

over operating free-air temperature range unless otherwise noted (Note)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{IN}	-0.3 ~ 6	V
Enable Input Voltage	ye V _{ON} -0.3 ~ 6		V
SET Voltage	V _{SET}	-0.3 ~ 6	V
Output Voltage	V _{OUT}	-0.3 ~ 6	V
Output Current	I _{OUT}	UT Internally Limited	
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

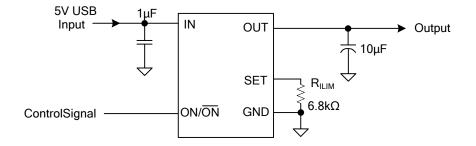
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}		°C/W

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V _{IN}	2.7		5.5	V
Enable Voltage	V _{/EN}			5.5	V
Continuous Output Current, OUT	I _{OUT}			1.0	А
Operating Virtual Junction Temperature	TJ	-40		+125	°C


■ ELECTRICAL CHARACTERISTICS

(V_{IN}=5V, T_A=25°C, unless otherwise specified)

<u>(; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
Supply Voltage	V _{IN}		2.7		5.5	V
Quiescent Current	I _{ON}	IN = 5 V, ON/ON = Active, I _{OUT} = 0 A		25	45	μA
Shutdown Current	I _{OFF}	IN = 5 V, ON/ON = Inactive			1	μA
Switch Off Current	I _{O_LEAK}	IN = 5 V, ON/ON = Inactive, V _{OUT} = 0V			1	μA
POWER SWITCH						
Static Drain-Source On-State	Б	IN=5V		160		mΩ
Resistance	R _{DS(on)}	IN=3V		190		mΩ
ENABLE INPUT ON OR ON						
Enable Pin Turn On/Off Threshold	Von	IN=2.7V to 5.5V	0.8		2.0	V
Input Current	I _{ON}	V _{ON} =0V or 5.5V		±1		μA
Turn On Time	T _{ON}			65	200	μs
Turn Off Time	TOFF	IN=5V, R⊾=10Ω		11	21	μs
CURRENT LIMIT			÷	÷		
Current-Limit Threshold	los	R _{SET} =6.8kΩ	0.85	1.1	1.35	А
UNDERVOLTAGE LOCKOUT						
Low-Level Input Voltage, IN	UVLO	V _{IN} Rising		2.3	2.65	V
Hysteresis, IN				200		mV

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

