UNISONIC TECHNOLOGIES CO., LTD

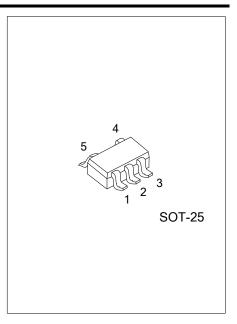
TS321

LINEAR INTEGRATED CIRCUIT

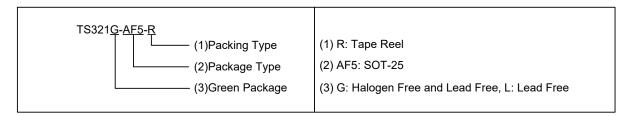
LOW-POWER SINGLE OPERATIONAL AMPLIFIER

DESCRIPTION

The UTC TS321's quiescent current is only 300µA (5V). The UTC TS321 brings performance and economy to low power systems. With a high unity gain frequency and a specified 0.45V/µs slew rate. The device is able to operate in single supply applications as well as in dual supply applications.


The UTC TS321 is a bipolar operational amplifier for cost-sensitive applications in which space savings are important.

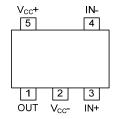
* Wide Power-Supply Range


Single Supply: 3V~30V or Dual Supply: ±1.5V~±15V

- * Large Output Voltage Swing: 0V~3.5V (Min.) (Vcc=5V)
- * Low Supply Current: 300µA (Typ.)
- * Low Input Bias Current: 20nA (Typ.)
- * Low Input Offset Voltage: 4mV (Max.)
- * Stable With High Capacitive Loads

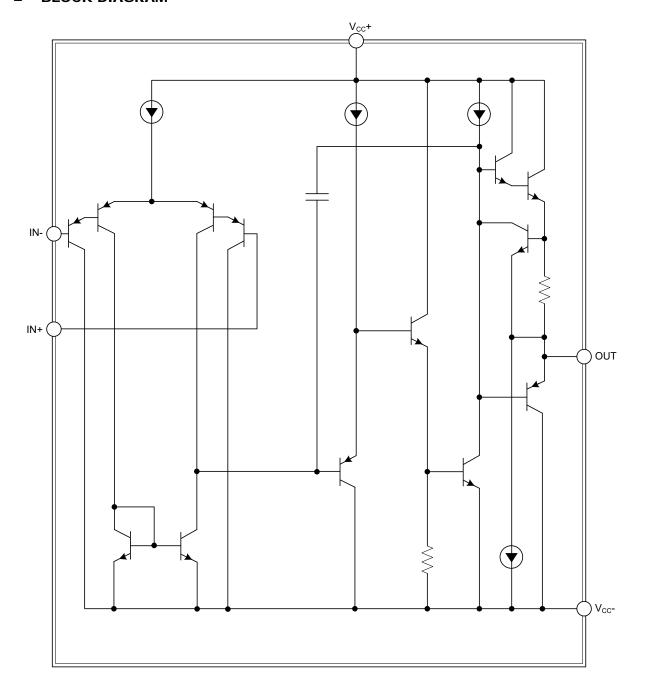
ORDERING INFORMATION

Ordering Number		Deekere	De altinos	
Lead Free	Halogen Free	Package	Packing	
TS321L-AF5-R	TS321G-AF5-R	SOT-25	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 6


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT	Output
2	V _{CC} -	Ground
3	IN+	Non- negative input
4	IN-	Negative input
5	V _{CC} +	Power supply

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (Note 1)

Over operating free-air temperature range (unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
O	Single		32	V
Supply Voltage (Note 2)	Dual	V _{CC}	±16	V
Differential Input Voltage (Note 3)		V_{ID}	32	V
Input Voltage Range (Note 2, 4)		Vı	-0.3 ~ 32	V
Input Current (Note 4)		l _l	50	mA
Duration Of Output Short Circuit To Ground		T _{SHORT}	Unlimited	
Power Dissipation		P _D	0.595	W
Operating Virtual Junction Temperature		T _J	+150	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

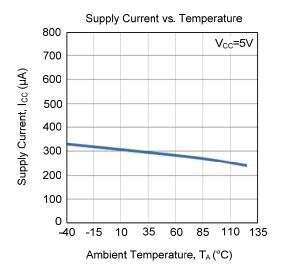
 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. These voltage values are with respect to the midpoint between $V_{\text{CC-}}$ and $V_{\text{CC-}}$.
 - 3. Differential voltages are at IN+ with respect to IN-.
 - 4. Neither input must ever be more positive than $V_{\text{CC+}}$ or more negative than $V_{\text{CC-}}$.

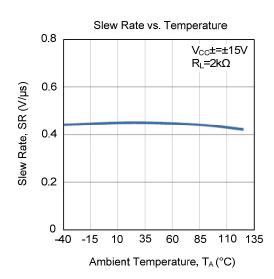
■ RECOMMENDED OPERATING CONDITIONS

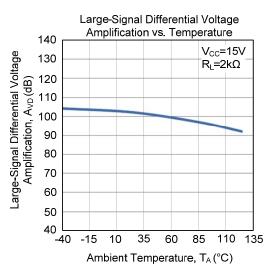
PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage	Single Supply		3 ~ 30	V
	Dual Supply	Vcc	±1.5 ~ ±15	V
Operating Free-Air Temperature		TA	-40 ~ +125	°C

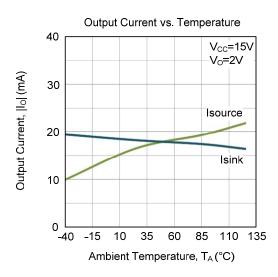
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θја	210	°C/W


■ ELECTRICAL CHARACTERISTICS (V_{CC+}=5V, V_{CC-}=GND, V₀=1.4V, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Offset Voltage	V _{IO}	R _S =0, 5V <v<sub>CC+<30V 0<v<sub>IC<(V_{CC+}-1.5V)</v<sub></v<sub>			0.5	4	mV
Input Offset Current	I _{IO}				2	30	nA
Input Bias Current (Note 1)	I _{IB}				20	150	nA
Large-Signal Differential Voltage Amplification	A _{VD}	V _{CC} =15V, R _L =2kΩ, V _O =1.4V~11.4V		50	100		V/mV
Common-Mode Input Voltage (Note 2)	V _{ICR}	V _{CC} =30V		0		V _{CC+} -1.5	V
		V _{CC} =30V	$R_L=2k\Omega$	26	27		
High-Level Output Voltage	V _{OH}	VCC-30V	R _L =10kΩ	27	28		V
		V _{CC} =5V	$R_L=2k\Omega$	3.5			
Low-Level Output Voltage	V _{OL}	$R_L=10k\Omega$			5	15	mV
Gain Bandwidth Product	GBP	V_{CC} =30V, V_I =10mV, R_L =2k Ω , f=100kHz, C_L =100pF			0.8		MHz
Slew Rate	SR	V_{CC} =15V, V_I =0.5V~3V, R_L =2k Ω , C_L =100pF, unity gain			0.45		V/µs
Phase Margin	φm				60		0
Common-Mode Rejection Ratio	CMRR	R _S ≤10kΩ		65	85		dB
Output Source Current	Isource	Vcc=15V, Vo=2V, V _{ID} =1	V	10	20		mA
Outside Circle Comment	Isink	\\ \ \ \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	V _O =2V	10	20		mA
Output Sink Current		$V_{CC}=15V, V_{ID}=1V$ $V_{O}=0.$		12	50		μA
Short-Circuit To GND	lo	V _{CC} =15V			40	60	mΑ
Supply-Voltage Rejection Ratio	SVR	Vcc=5V~30V		65	110		dB
Total Supply Current	Icc		Vcc=5V		300	800	μA
		No load Vcc=30V			450	900	μA
Total Harmonic Distortion	THD	V_{CC} =30V, V_{O} =2V _{PP} , A_{V} =20dB, R_{L} =2k Ω , f=1kHz, C_{L} =100pF			0.015		%
Equivalent Input Noise Voltage	en	V _{CC} =30V, f=1kHz, R _S =100Ω			50		nV/√Hz


Notes: 1. The direction of the input current is out of the device. This current essentially is constant, independent of the state of the output, so no loading change exists on the input lines.


^{2.} The input common-mode voltage of either input signal should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC+}-1.5V, but either or both inputs can go to 32V without damage.

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.