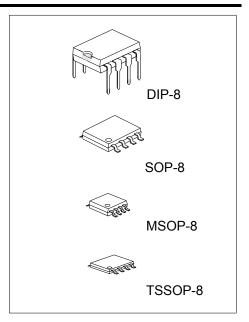


UNISONIC TECHNOLOGIES CO., LTD

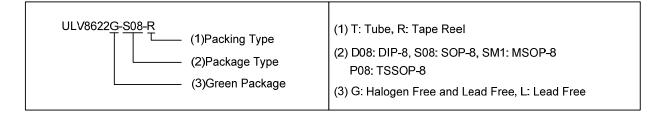

ULV8622 Preliminary CMOS IC

5.5MHZ, LOW VOLTAGE **RAIL-TO-RAIL I/O CMOS DUAL OP AMPS**

DESCRIPTION

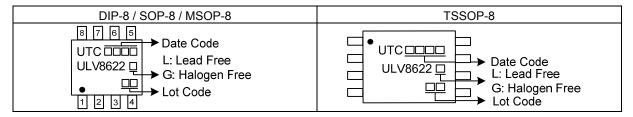
The UTC ULV8622 is low noise, low voltage and low power dual operational amplifiers that can be designed into a wide range of applications. With a 5.5MHz unity-gain frequency and a guaranteed 3.7V/µs slew rate, the quiescent current is only 480µA/amplifier (5.0V).

The UTC ULV8622 provides rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground and the maximum input offset voltage is 3mV. It is specified over the extended industrial temperature range (-40°C ~ +125°C). The operating range is 2.0V ~ 5.5V. The UTC ULV8622 provides optimal performance in low voltage and low noise systems.

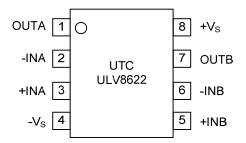


FEATURES

- * Rail-to-Rail Input and Output
- * Input Rail: $-0.1V \sim +5.6V$ with $V_S = 5.5V$
- * Gain-Bandwidth Product: 5.5MHz
- * High Slew Rate: 3.7V/µs
- * Operates on 2.0V ~ 5.5V Supplies
- * Low Power: 480µA/Amplifier Typical Supply Current

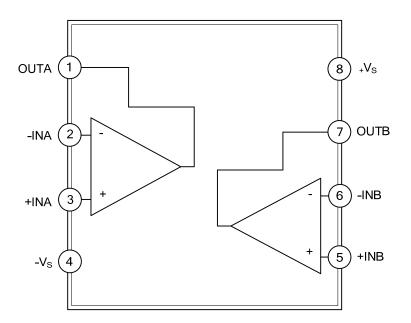

ORDERING INFORMATION

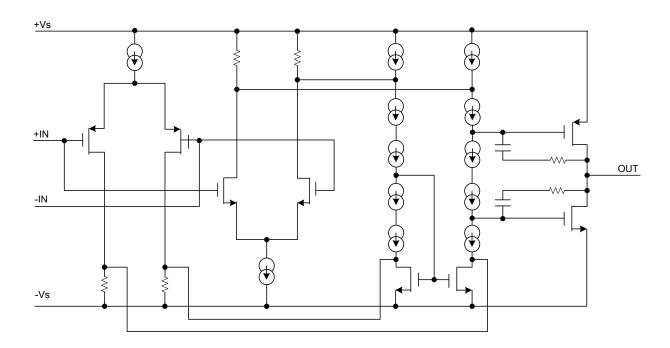
Ordering	<u>Number</u>	Daakaga	Packing	
Lead Free Plating	Halogen Free	Package		
ULV8622L-D08-T	ULV8622G-D08-T	DIP-8	Tube	
ULV8622L-S08-R	ULV8622G-S08-R	SOP-8	Tape Reel	
ULV8622L-SM1-R	ULV8622G-SM1-R	MSOP-8	Tape Reel	
ULV8622L-P08-R	ULV8622G-P08-R	TSSOP-8	Tape Reel	



www.unisonic.com.tw 1 of 9 QW-R105-064.d

■ MARKING


■ PIN CONFIGURATION


■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	OUTA	Output of op amp A			
2	-INA	Negative Input of op amp A			
3	+INA	Positive Input of op amp A			
4	-V _S	Negative Power Supply			
5	+INB	Positive Input of op amp B			
6	-INB	Negative Input of op amp B			
7	OUTB	Output of op amp B			
8	+V _S	Positive Power Supply			

■ BLOCK DIAGRAM

■ FUNCTIONAL BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage, V+ ~ V-	Vs	6	V
Common-Mode Input Voltage	V_{CM}	$(-V_S)-0.3 \sim (+V_S)+0.3$	V
Junction Temperature	TJ	+150	°C
Operating Temperature	T _{OPR}	-40 ~ +125	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
	DIP-8		90	°C/W
hunstian to Ambient	SOP-8	θ_{JA}	125	°C/W
Junction to Ambient	MSOP-8		220	°C/W
	TSSOP-8		150	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C,V_S=5V,V_{CM}=V_S/2,R_L=600Ω, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS						
Input Offset Voltage	Vos			0.9	3	mV
Input Bias Current	I _B			1		pА
Input Offset Current	los			1		pА
Common-Mode Voltage Range	V_{CM}	V _S =5.5V		-0.1~+5.6		V
Common-Mode Rejection Ratio	CMRR	V _S =5.5V, V _{CM} =-0.1V~4V	65	84		dB
		V _S =5.5V, V _{CM} =-0.1V~5.6V		76		dB
Onen Leen Voltage Coin	_	R _L =600Ω, Vo=0.15V~4.85V	75	92		dB
Open-Loop Voltage Gain	A _{OL}	R _L =10KΩ, Vo=0.05V~4.95V		103		dB
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$			2.7		μV/°C
OUTPUT CHARACTERISTICS						
Output Valtage Coding from Dail	.,	R _L =600Ω		0.1		V
Output Voltage Swing from Rail	Vo	$R_L=10K\Omega$		0.01		V
Output Current	l _{out}		39	51		mA
Closed-Loop Output Impedance	Ro	F=200KHz, G=1		5.4		Ω
POWER SUPPLY						
Operating Voltage Range	Vs		2.0		5.5	V
Power Supply Rejection Ratio	PSRR	V_S =+2.5V~+5.5V, V_{CM} =(- V_S)+0.5V	70	84		dB
Quiescent Current/ Amplifier	IQ	I _{OUT} =0		480	620	μA
DYNAMIC PERFORMANCE						
Gain-Bandwidth Product	G_BP	R_L =10K Ω		5.5		MHz
Phase Margin	φο			63		degrees
Full Power Bandwidth	BW _P	<1% Distortion		250		KHz
Slew Rate	SR	G=+1, 2V Output Step		3.7		V/µs
Settling Time To 0.1%	ts	G=+1, 2V Output Step		2.1		μs
Overload Recovery Time	t _{OR}	V _{IN} · Gain=Vs		1		μs
NOISE PERFORMANCE						
Voltage Noise Density	e _N	f=1kHz		13		nV/ √Hz
		1				

■ APPLICATION NOTES

Driving a Capacitive Load

The UTC **ULV8622** can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. It is recommended that an isolation resistor ($R_{\rm ISO}$) is placed in series with the output of the amplifier when the greater capacitive load is required. The circuit is shown in Figure 1. The $R_{\rm ISO}$ and the load capacitor C_L form a zero to increase stability, but this method results in a loss of gain accuracy for $R_{\rm ISO}$ dividing the voltage with $R_{\rm LOAD}$.

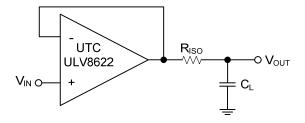


Figure 1. Indirectly Driving Heavy Capacitive Load

The circuit in Figure 2 provides DC accuracy and AC stability. To increase the DC accuracy, R_F should be connected between the inverting input and the output. To preserve the phase margin in the overall feedback loop, C_F is required and can compensate the loss of phase margin together with R_{Iso} by feeding the high frequency component of the output signal back to the amplifier's inverting input

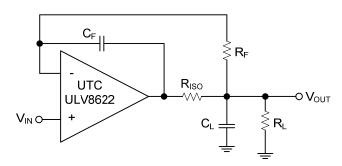


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

■ APPLICATION NOTES (Cont.)

Power-Supply Bypassing and Layout

The UTC **ULV8622** can apply for a single +2V \sim +5.5V supply or dual \pm 1V \sim \pm 2.75V supplies. For single-supply operation, a 0.1 μ F ceramic capacitor should be placed close to the V_{DD} pin to bypass the power supply V_{DD}. For dual-supply operation, separate 0.1 μ F ceramic capacitors should be placed to the V_{DD} and the V_{SS} supplies to bypass them to ground, and 2.2 μ F tantalum capacitor for better performance.

By decreasing the amount of stray capacitance at the op amp's inputs and output, PC board I performance can be optimized. For example, placing external components as close to the device as possible can minimize trace lengths and widths. and using surface-mount components is a better way.

For the operational amplifier, soldering the part to the board directly is strongly recommended. The EMI can be minimized because keeping the high frequency big current loop area small.

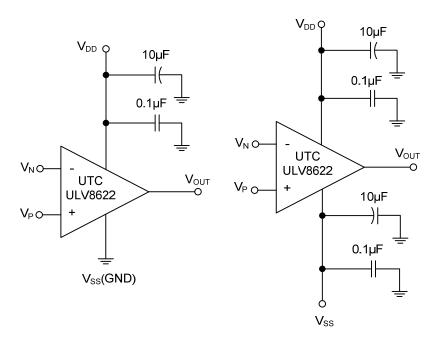


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for UTC **ULV8622** circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

The input and output signal traces should not be parallel to minimize capacitive coupling. This helps reducing unwanted positive feedback.

■ TYPICAL APPLICATION CIRCUITS

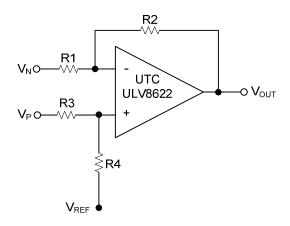


Figure 4. Differential Amplifier

Note: Figure 4 is the differential amplifier. If the resistors ratios are equal (R4/R3=R2/R1), then V_{OUT} =(V_p - V_n)×R2/R1+ V_{REF} .

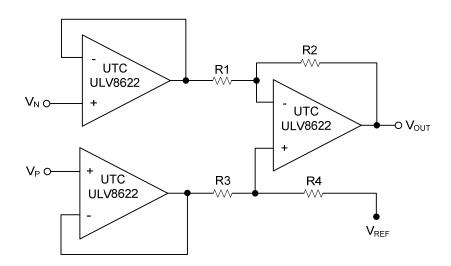


Figure 5. Instrumentation Amplifier

Note: Figure 5 performs the same function as that in Figure 4 but with the high input impedance.

■ TYPICAL APPLICATION CIRCUITS (Cont.)

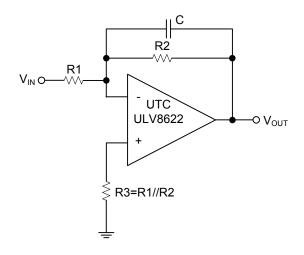


Figure 6. Low Pass Active Filter

Figure 6 is the low pass filter. It's DC gain is -R2/R1 and the -3dB corner frequency is $1/2\pi R_2C$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.