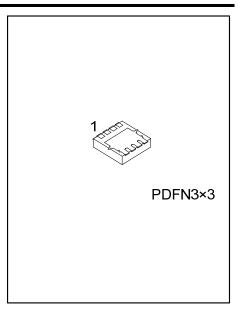


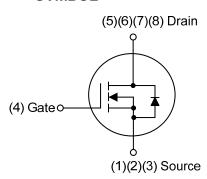
# UNISONIC TECHNOLOGIES CO., LTD

UT30N065 Preliminary POWER MOSFET

# 30A, 65V N-CHANNEL POWER MOSFET

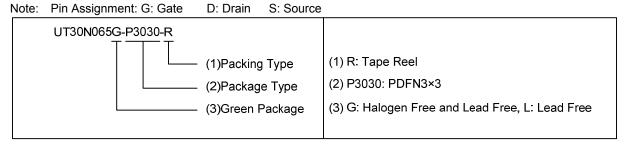

#### **■** DESCRIPTION

The UTC **UT30N065** is a N-channel enhancement MOSFET using UTC's advanced technology to provide the customers with perfect  $R_{\text{DS(ON)}}$  and high switching speed.

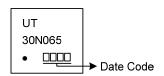

The UTC **UT30N065** is suitable for all commercial-industrial applications at power dissipation levels to approximately 50 watts, etc.

#### **■ FEATURES**

- \*  $R_{DS(ON)} \le 25 \text{ m}\Omega$  @  $V_{GS}=10V$ ,  $I_D=15A$  $R_{DS(ON)} \le 30 \text{ m}\Omega$  @  $V_{GS}=4.5V$ ,  $I_D=15A$
- \* High Switching Speed




#### ■ SYMBOL




#### ORDERING INFORMATION

| Ordering          | Deelsess          | Pin Assignment |   |   |   |   |   |   | Doolsing |   |           |
|-------------------|-------------------|----------------|---|---|---|---|---|---|----------|---|-----------|
| Lead Free         | Halogen Free      | Package        | 1 | 2 | 3 | 4 | 5 | 6 | 7        | 8 | Packing   |
| UT30N065L-P3030-R | UT30N065G-P3030-R | PDFN3×3        | S | S | S | G | D | D | D        | D | Tape Reel |



#### ■ MARKING



<u>www.unisonic.com.tw</u> 1 of 5

#### ■ ABSOLUTE MAXIMUM RATING (T<sub>C</sub>=25°C, unless otherwise specified)

| PARAMETER                 |                 | SYMBOL           | RATINGS    | UNIT |
|---------------------------|-----------------|------------------|------------|------|
| Drain-Source Voltage      |                 | $V_{DSS}$        | 65         | >    |
| Gate-Source Voltage       |                 | $V_{GSS}$        | ±20        | >    |
| Danie Commont             | Continuous      | $I_{D}$          | 30         | Α    |
| Drain Current             | Pulsed (Note 2) | I <sub>DM</sub>  | 60         | Α    |
| Power Dissipation         |                 | $P_{D}$          | 36         | W    |
| Junction Temperature      |                 | TJ               | +150       | °C   |
| Storage Temperature Range |                 | T <sub>STG</sub> | -20 ~ +150 | °C   |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

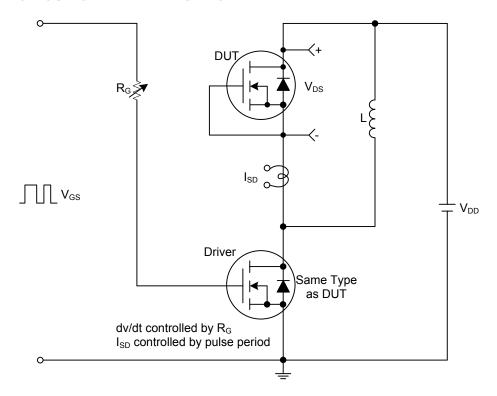
### **■ THERMAL DATA**

| PARAMETER           | SYMBOL          | RATINGS     | UNIT |
|---------------------|-----------------|-------------|------|
| Junction to Ambient | $\theta_{JA}$   | 75          | °C/W |
| Junction to Case    | θ <sub>JC</sub> | 3.47 (Note) | °C/W |

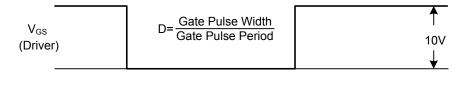
Note: The data tested by surface mounted on a 1 inch<sup>2</sup> FR-4 board with 2OZ copper.

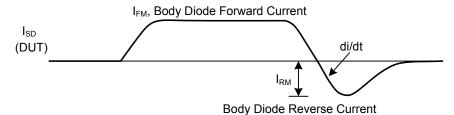
## ■ ELECTRICAL CHARACTERISTICS (T<sub>J</sub> =25°C, unless otherwise specified)

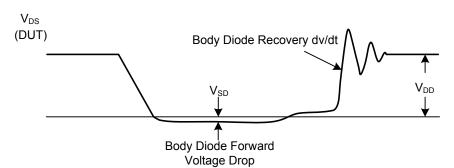
| PARAMETER                                       |              | SYMBOL              | TEST CONDITIONS                                     | MIN | TYP  | MAX  | UNIT |  |  |
|-------------------------------------------------|--------------|---------------------|-----------------------------------------------------|-----|------|------|------|--|--|
| OFF CHARACTERISTICS                             |              |                     |                                                     |     |      |      |      |  |  |
| Drain-Source Breakdown Voltage                  |              | BV <sub>DSS</sub>   | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V          | 65  |      |      | V    |  |  |
| Drain-Source Leakage Current                    |              | I <sub>DSS</sub>    | V <sub>DS</sub> =65V, V <sub>GS</sub> =0V           |     |      | 1    | μΑ   |  |  |
| Onto Common London Commont                      | Forward      | - I <sub>GSS</sub>  | V <sub>GS</sub> =+20V, V <sub>DS</sub> =0V          |     |      | +100 | nA   |  |  |
| Gate-Source Leakage Current                     | Reverse      |                     | V <sub>GS</sub> =-20V, V <sub>DS</sub> =0V          |     |      | -100 | nA   |  |  |
| ON CHARACTERISTICS                              |              |                     |                                                     | •   | •    |      |      |  |  |
| Gate Threshold Voltage                          |              | $V_{GS(TH)}$        | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                  | 1.0 |      | 3.0  | V    |  |  |
| Static Drain-Source On-State Resistance         |              | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =15A           |     |      | 25   | mΩ   |  |  |
|                                                 |              |                     | V <sub>GS</sub> =4.5V, I <sub>D</sub> =15A          |     |      | 35   | mΩ   |  |  |
| DYNAMIC PARAMETERS                              |              |                     |                                                     |     |      |      |      |  |  |
| Input Capacitance                               |              | C <sub>ISS</sub>    |                                                     |     | 1620 |      | pF   |  |  |
| Output Capacitance                              |              | Coss                | V <sub>GS</sub> =0V, V <sub>DS</sub> =25V, f=1.0MHz |     | 180  |      | pF   |  |  |
| Reverse Transfer Capacitance                    |              | $C_{RSS}$           |                                                     |     | 120  |      | pF   |  |  |
| SWITCHING PARAMETERS                            |              |                     |                                                     |     |      |      |      |  |  |
| Total Gate Charge (Note 1)                      |              | $Q_G$               | \                                                   |     | 36   |      | nC   |  |  |
| Gate to Source Charge                           |              | $Q_GS$              | $V_{DS}$ =30V, $V_{GS}$ =10V, $I_{D}$ =30A,         |     | 4.5  |      | nC   |  |  |
| Gate to Drain Charge                            |              | $Q_GD$              | I <sub>G</sub> =1mA (Note 1, 2)                     |     | 7    |      | nC   |  |  |
| Turn-on Delay Time (Note 1)                     |              | $t_{D(ON)}$         |                                                     |     | 7    |      | ns   |  |  |
| Rise Time                                       |              | $t_R$               | $V_{DD}$ =30V, $V_{GS}$ =10V, $I_{D}$ =1A,          |     | 15   |      | ns   |  |  |
| Turn-off Delay Time                             |              | t <sub>D(OFF)</sub> | $R_G = 3\Omega$ (Note 1, 2)                         |     | 63   |      | ns   |  |  |
| Fall-Time                                       |              | $t_{F}$             |                                                     |     | 42   |      | ns   |  |  |
| SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS |              |                     |                                                     |     |      |      |      |  |  |
| Maximum Body-Diode Continuous                   | Current      | $I_S$               |                                                     |     |      | 30   | Α    |  |  |
| Maximum Body-Diode Pulsed Cur                   | rent         | I <sub>SM</sub>     |                                                     |     |      | 60   | Α    |  |  |
| Drain-Source Diode Forward Volta                | ige (Note 1) | $V_{SD}$            | I <sub>S</sub> =30A, V <sub>GS</sub> =0V            |     |      | 1.4  | V    |  |  |
| Reverse Recovery Time (Note 1)                  |              | t <sub>rr</sub>     | I <sub>S</sub> =30A, V <sub>GS</sub> =0V,           | 30  |      | nS   |      |  |  |
| Reverse Recovery Charge                         |              | $Q_{rr}$            | dI <sub>F</sub> /dt =100A/μs                        |     | 16   |      | nC   |  |  |


Notes: 1. Pulse Test : Pulse width  $\leq$  300 $\mu$ s, Duty cycle  $\leq$  2%.




<sup>2.</sup> Repetitive Rating: Pulse width limited by maximum junction temperature


<sup>2.</sup> Essentially independent of operating ambient temperature.

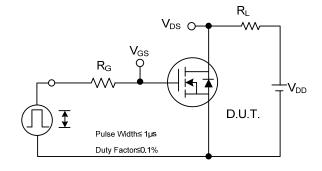

### **■ TEST CIRCUITS AND WAVEFORMS**

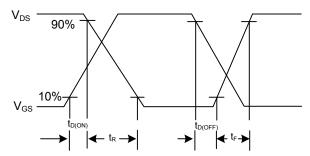


#### Peak Diode Recovery dv/dt Test Circuit



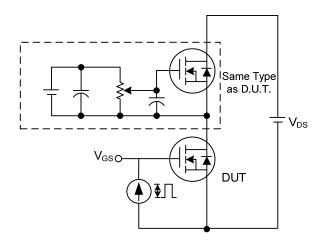


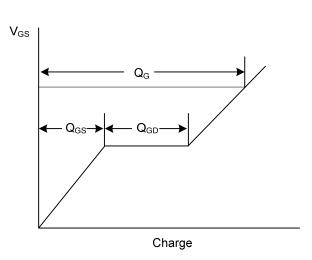




Peak Diode Recovery dv/dt Test Circuit and Waveforms

#### Peak Diode Recovery dv/dt Waveforms

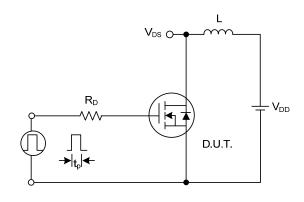
### **■ TEST CIRCUITS AND WAVEFORMS**

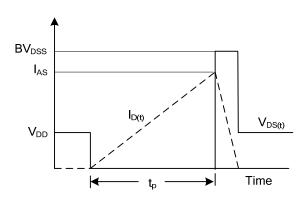

**Preliminary** 






**Switching Test Circuit** 


**Switching Waveforms** 






**Gate Charge Test Circuit** 

**Gate Charge Waveform** 





**Unclamped Inductive Switching Test Circuit** 

**Unclamped Inductive Switching Waveforms** 

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

**Power MOSFET**