

UNISONIC TECHNOLOGIES CO., LTD

UM62342

Advance

CMOS IC

8-BIT D/A CONVERTER (BUFFERED)

DESCRIPTION

The UM62342 is D/A CMOS-structure semiconductor integrated circuits incorporating two 8-bit channels.

Serial data transfer type input through a combination of three lines: DI, CLK, and LD.

It's operate over the entire voltage range from almost ground to $V_{CC}(0$ to 5 V), making peripheral elements unnecessary and enabling configuration of a system with few component parts.

Outputs incorporate buffer op-amps that have a drive capacity of 1 mA or above for both sink and source.

FEATURES

- * Output buffer op-amps Operable over entire voltage range from almost ground to $V_{CC}(0 \text{ to } 5 \text{ V})$
- * Data transfer format 10-bit serial data input type
- * High output current capacity ± 1 mA or higher

ORDERING INFORMATION

Ordering	Number	Daakaga	Deaking	
Lead Free	Lead Free Halogen Free		Packing	
UM62342L-S08-R	UM62342G-S08-R	SOP-8	Tape Reel	

MARKING

www.unisonic.com.tw

Copyright © 2019 Unisonic Technologies Co., Ltd

■ PIN CONFIGURATION

PIN DISCRIPTION

PIN NO	PIN NAME	DESCRIPTION				
1	A _{O1}	8-bit resolution D/A converter output pins				
2	A _{O2}	(After power-on, all channels are reset and DAC data 00h is output.)				
3	NC	No connect				
4	Vcc	Power supply				
5	GND	Ground				
6	DI	Serial data input pin. Inputs serial data with a 10-bit data length.				
7	CLK	Serial clock input pin. Input signal from DI pin is input to 10-bit shift register at rise of shift clock.				
8	LD	Load pin. When "H" level is input to LD pin, value in 10-bit shift register is loaded into decoder and D/A output register.				

UM62342

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Input Supply Voltage	V _{cc}	7.0	V
All Other Pins Voltage		7.0	V
Storage Temperature	Ts	-40 ~ + 125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Supply Voltage	V _{DD}	Operating	2.7	5	5.5	V
Operating Temperature Range	T _{OPR}		-20		+85	°C

■ ELECTRICAL CHARACTERISTICS (V_{DD}=5V±10%,T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage range	V _{CC}		2.7	5	5.5	V
		DI=CLK=LD=GND,I _{AO} =0uA	0	0.5	1.6	
V Supply Current		At CLK=1MHz operation,				m۸
	ICC	I _{AO} =0uA, D/A data: 6Ah	0	0.7	2.5	ШA
		(at maximum current)				
Input leakage current	I _{ILK}	V _{IN} =0 to V _{CC}	-10		10	uA
Input voltage L	VIL		0		$0.2V_{CC}$	V
Input voltage H	VIH		$0.5V_{CC}$		V _{CC}	V
		L ==+100uA	0.1		V _{CC} -0.	- V
Buffer amp output voltage range	Via		0.1		1	
	VAO	Lo=+500uA	0.2		V_{CC} -0.	
		140-10000A	0.2		2	
Buffer amp output drive range	l	Upper saturation voltage=0.3V	-1.0		10	mΔ
	IAU	Lower saturation voltage=0.2V	1.0		1.0	110 \
Differential nonlinearity error	S _{DL}		-1.0		1.0	LSB
Nonlinearity error	SL	V _{CC} =5.12V (20mV/LSB)	-1.5		1.5	LSB
Zero point error	SZERO	No load (I _{AO} =0)	-2.0		2.0	LSB
Full-scale error	S _{FULL}		-2.0		2.0	LSB

■ AC CHARACTERISTICS (V_{DD}=5V±10%,T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Clock "L"pulse width	t _{CKL}		200			ns
Clock "H"pulse width	t _{скн}		200			ns
Clock rise time	t _{CR}				200	ns
Clock fall time	t _{CF}				200	ns
D-A output setting time	t _{LDD}	Until output reaches last 1/2 LSB			300	us

DIGITAL DATA FORMAT

Last LSB -									First MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9
			For D-A	A output				For chann	el address

Channel Select Data

D8	D9	Channel Selection
0	0	A _{O1} selected
1	0	A _{O2} selected
0	1	Don't care
1	1	Don't care

DAC Data

D0	D1	D2	D3	D4	D5	D6	D7	DAC output
0	0	0	0	0	0	0	0	V _{CC} /256×1
1	0	0	0	0	0	0	0	V _{CC} /256×2
0	1	0	0	0	0	0	0	V _{CC} /256×3
1	1	0	0	0	0	0	0	V _{CC} /256×4
				-		-		
-	•	-			•		•	
0	1	1	1	1	1	1	1	V _{CC} /256×255
1	1	1	1	1	1	1	1	V _{CC} /256×256

Data Timing Chart (Model)

APPLICATION INFORMATION

1. With this IC, D/A converter upper reference voltage setting is performed by means of the power supply voltage. If ripples or spikes are imposed on this pin, conversion accuracy may fall. When using this IC, a capacitor must be inserted between the power supply pin and GND in order to ensure stable D/A conversion.

2. The output buffer amps of this IC are highly tolerant of capacitive loads. Therefore, connecting capacitors (0.1μ F max.) between the output pins and ground in order to eliminate jitter or noise due to output line wiring presents no problems whatever in terms of operation.

UM62342

APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

