

UNISONIC TECHNOLOGIES CO., LTD

TDA8541

Preliminary

LINEAR INTEGRATED CIRCUIT

1W BTL AUDIO AMPLIFIER

DESCRIPTION

The UTC **TDA8541**(T) is a 1W BTL audio amplifier ,which has a complementary PNP-NPN output stage and standby/mute logic, it uses UTC's advanced technology to provide customers with low saturation voltage of output stage, low standby current and high SVRR, etc.

FEATURES

- * Low saturation voltage of output stage
- * External resistors could fix Gain
- * Low standby current
- * No switch-on/switch-off plops
- * High SVRR
- * Protected against outputs short-circuit to ground, V_{CC} and across the load
- * Thermal shut-down protection

ORDERING INFORMATION

Ordering Number		Deskere	Deaking	
Lead Free	Halogen Free	Раскаде	Packing	
TDA8541L-S08-R	TDA8541G-S08-R	SOP-8	Tape Reel	

MARKING

Preliminary

PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	MODE	Operating mode select (standby, mute, operating)
2	SVR	Half supply voltage, decoupling ripple rejection
3	IN+	Positive input
4	IN-	Negative input
5	OUT-	Negative loudspeaker terminal
6	Vcc	Supply voltage
7	GND	Ground
8	OUT+	Positive loudspeaker terminal

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage	Operating	Vcc	-0.3 ~ +18	V
Input Voltage		VI	-0.3 ~ V _{CC} +0.3	V
Repetitive Peak Output Current		IORM	1	А
AC and DC Short-Circuit Safe Voltage		V _{PSC}	10	V
Total Power Dissipation		PD	0.8	W
Storage Temperature	Non-Operating	T _{STG}	-55 ~ +150	°C
Operating Ambient Temperature		T _A	-40 ~ +85	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ」Α	160	°C/W

DC ELECTRICAL CHARACTERISTICS

(V_{CC}=5V, T_A=25°C, R_L=8Ω, V_{MODE}=0V, measured in test circuit Figure 1, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc	Operating	2.3	5	18	V
Quiescent Current	lq	R _L =∞ (Note 1)		8	12	mA
Standby Current	I _{stb}	V _{MODE} =V _{CC}			10	μA
DC Output Voltage	Vo	(Note 2)		2.4		V
Differential Output Voltage Offset	Vout+-Vout-				80	mV
Input Bias Current	I _{IN+} , I _{IN-}				500	nA
Input Voltage Mode Select	V _{MODE}	Operating	0		0.5	V
		Mute	1.5		Vcc-1.5	V
		Standby	Vcc-0.5		Vcc	V
Input Current Mode Select	IMODE	0 <v<sub>MODE<v<sub>CC</v<sub></v<sub>			20	μA

Notes: 1. With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the DC output offset voltage divided by R_L.

2. The DC output voltage with respect to ground is approximately $0.5 \times V_{CC}$.

■ AC ELECTRICAL CHARACTERISTICS

(VCC-3V, Tamb-23 C, NL-622, I-TKTZ, VMODE-0V, The asuled in test circuit Figure 1, diffess otherwise specified.)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Douron	Po	THD=10%	1	1.2		W
Output Power		THD=0.5%	0.6	0.9		W
Total Harmonic Distortion	THD	P₀=0.5W		0.15	0.3	%
Closed Loop Voltage Gain	Gv	(Note 1)	6		30	dB
Differential Input Impedance	Zi			100		kΩ
Noise Output Voltage	V _{no}	(Note 2)			100	μV
Supply Voltage Ripple Rejection	SVRR	(Note 3)	50			dB
		(Note 4)	40			dB
Output Voltage In Mute Condition	Vo	(Note 5)			200	μV

(V_{CC}=5V, T_{amb}=25°C, R_L=8Ω, f=1kHz, V_{MODE}=0V, measured in test circuit Figure 1, unless otherwise specified.)

Notes: 1. Gain of the amplifier is 2×R2/R1 in test circuit of Figure 1.

2. The noise output voltage is measured at the output in a frequency range from 20Hz to 20kHz (unweighted), with a source impedance of $R_s=0\Omega$ at the input.

3. Supply voltage ripple rejection is measured at the output, with a source impedance of $R_S=0\Omega$ at the input. The ripple voltage is a sine wave with a frequency of 1kHz and an amplitude of 100mV (RMS), which is applied to the positive supply rail.

4. Supply voltage ripple rejection is measured at the output, with a source impedance of $R_s=0\Omega$ at the input. The ripple voltage is a sine wave with a frequency between 100Hz and 20kHz and an amplitude of 100mV (RMS), which is applied to the positive supply rail.

5. Output voltage in mute position is measured with an input voltage of 1V (RMS) in a bandwidth of 20kHz, so including noise.

TYPICAL APPLICATION CIRCUIT

Figure 1. BTL Application.

TYPICAL CHARACTERISTICS

Preliminary

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

