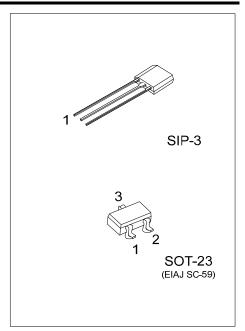


UNISONIC TECHNOLOGIES CO., LTD

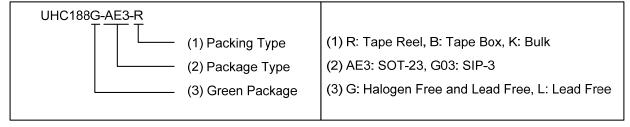

UHC188 CMOS IC

SINGLE OUTPUT HALL EFFECT LATCH

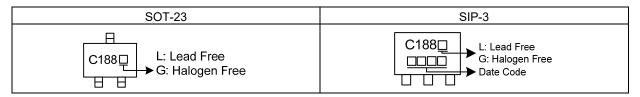
DESCRIPTION

UTC UHC188 is an integrated Hall effect latched sensor designed for electronic commutation of brush-less DC motor applications. The device using HVCMOS process includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and open-collector output. An internal band-gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range.

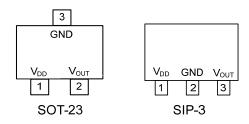
If a magnetic flux density larger than threshold Bop, OUT is turned on (low). The output state is held until a magnetic flux density reversal falls below Brp causing OUT to be turned off (high).


FEATURES

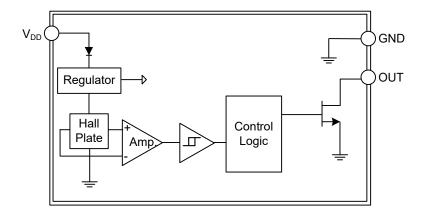
- * 2.8V~30V DC operation voltage
- * Temperature compensation
- * Wide operating voltage range
- * Open-Drain pre-driver
- * 25mA maximum sinking output current.


ORDERING INFORMATION

Ordering Number		Deelsene	Pin	Assignm	Daakina		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UHC188L-AE3-R	UHC188G-AE3-R	SOT-23	-	0	G	Tape Reel	
UHC188L-G03-B	UHC188G-G03-B	SIP-3	1	G	0	Tape Box	
UHC188L-G03-K	UHC188G-G03-K	SIP-3	I	G	0	Bulk	


Note: Pin Assignment: I: VDD G: GND O: Output

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NAME	DESCRIPTION
V_{DD}	Supply voltage
GND	Ground
Output	Output voltage

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETEI	₹	SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	32	V
Reverse V _{CC} Polarity Voltage		V_{RCC}	-32	V
Magnetic Flux Density		В	Unlimited	Gauss
Output Current	Continuous	lo	25	mA
Davier Dissipation	SOT-23	0	200	mW
Power Dissipation	SIP-3	P_D	400	mW
Ambient Temperature		T_A	-40 ~ +125	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (VDD=12V, TA=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{DD}	Operating	2.8		30	V
Supply Current	I _{DD}	Operating		3.0	4.5	mA
Output Leakage Current	loff	V _{OUT} = 12V		< 0.1	10	uA
Output Saturation Voltage	V _{DS(SAT)}	I _{OUT} =20mA		0.3		V

■ MAGNETIC CHARACTERISTICS (V_{DD}=12V, T_A=25°C, unless otherwise specified)

For UHC188-A

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operate Point, BOP	Вор	B>Bop, Vout On	5	20	40	Gauss
Release Point, BRP	B _{RP}	B <b<sub>RP, V_{OUT} Off</b<sub>	-40	-20	-5	Gauss
Hysteresis	Вну	IBOP - BRPI		40		Gauss

For UHC188-B

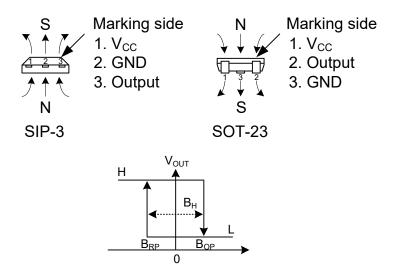
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operate Point, BOP	Вор	B>B _{OP} , V _{OUT} On	5	35	60	Gauss
Release Point, BRP	B _{RP}	B <b<sub>RP, V_{OUT} Off</b<sub>	-60	-35	-5	Gauss
Hysteresis	Вну	BOP - BRP		70		Gauss

Note: 1mT=10 Gauss.

■ DRIVER OUTPUT VS. MAGNETIC POLE

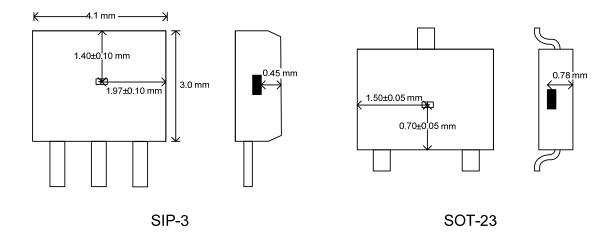
For SIP3

PARAMETER	TEST CONDITIONS	DO
North Pole	B < Brp	High
South Pole	B > Bop	Low

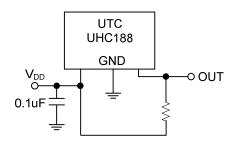

Note: The magnetic pole is applied facing the branded side of the SIP-3 package.

For SOT-23

PARAMETER	TEST CONDITIONS	DO
North Pole	B > Bop	Low
South Pole	B < Brp	High


Note: The magnetic pole is applied facing the branded side of the SOT-23 package.

■ CHYSTERESIS CHARACTERISTICS



Magnetic Flux Density
Figure 1. Applying Direction of Magnetic Flux

■ TEST CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

