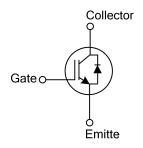
UPG15N65

Preliminary

Insulated Gate Bipolar Transistor

650V, SMPS N-CHANNEL IGBT

DESCRIPTION


Ths UPG15N65 is a Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Non-Punch Through (NPT) Trench construction, and provides superior performance in demanding switching applications.

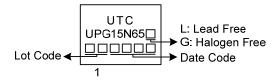
Offering both low on state voltage and minimal switching loss, the IGBT is well suited for motor drive control and other hard switching applications.

FEATURES

- * $V_{CE(SAT)} \le 2.5V @ I_C=15A, V_{GE}=15V$
- * 650V Switching SOA Capability
- * Low Saturation Voltage Resulting in Low Conduction Loss
- * Low Switching Loss in Higher Frequency Applications
- * 5µs Short Circuit Capability
- * Excellent Current

SYMBOL

ORDERING INFORMATION


Ordering Number		Dookogo	Pin	Assignn	Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UPG15N65L-TF3-T	UPG15N65G-TF3-T	TO-220F	G	С	E	Tube	

E: Emitter

C: Collector

Note: Pin Assignment: G: Gate UPG15N65G-TF3-T (1)Packing Type (1) T: Tube (2)Package Type (2) TF3: TO-220F (3)Green Package (3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

TO-220F

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Emitter Voltage		V_{CES}	650	V
Gate to Emitter Voltage Continuous		$V_{\sf GES}$	±20	V
Oti	T _C =25°C	Ic	30	Α
Continuous Collector Current	T _C =100°C		15	Α
Collector Current Pulsed (Note 2)		I_{CM}	60	Α
Peak Diode Recovery dv/dt (Note 3)		dv/dt	6.4	V/ns
Power Dissipation		P_D	30	W
Junction Temperature		T_J	-55 ~ + 150	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. $I_F \le 8.0 A$, di/dt $\le 200 A/\mu s$, $V_{CC} \le BV_{CES}$, Starting $T_J = 25 ^{\circ}C$

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Case	θ_{JC}	4.17	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Collector-Emitter Breakdown Voltage	BV_CES	I _C =250μA, V _{GE} =0V		650			V	
Collector-Emitter Leakage Current	I _{CES}	V _{CE} =650V, V _{GE} =0V				200	μΑ	
Gate to Emitter Leakage Current	I_{GES}	V _{GE} =20V, V _{GE} =0V				±400	nA	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =15A, V _{GE} =15V	TJ=25°C		2.0	2.5	V	
			T _J =125°C		2.4		V	
Gate to Emitter Threshold Voltage	$V_{GE(TH)}$	I_C =250 μ A, V_{CE} = V_{GE}		4.0		7.0	V	
Input Capacitance	C _{IES}	V _{CE} =30V, V _{GE} =0V, f=1MHz			800		pF	
Output Capacitance	C_OES				88		pF	
Reverse Transfer Capacitance	C_RES				15		pF	
Total Gate Charge	Q_{G}	V _{CE} =100V, V _{GE} =10V, I _C =15A			30		nC	
Gate-Emitter Charge	Q_GE				10		nC	
Gate-Collector Charge	Q_GC				14		nC	
Current Turn-On Delay Time	t _{D(ON)}	V_{CE} =100V, V_{GE} =15V, I_{C} =15A, R_{G} =24 Ω			10		ns	
Current Rise Time	t_R				24		ns	
Current Turn-Off Delay Time	t _{D(OFF)}				90		ns	
Current Fall Time	t _F				75		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Forward Voltage Drop	V_{FM}	I _F =15A				2.6	V	
Reverse Recovery Time	t _{rr}	I _F =15A, dI/dt=100A/μS			100		ns	
Reverse Recovery Charge	Q _{rr}				230		nC	

Note: Pulse Test: Pulse width ≤ 50 µs.

■ TEST CIRCUIT AND WAVEFORMS

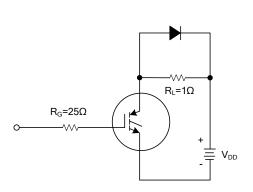


Fig 1. INDUCTIVE SWITCHING TEST CIRCUIT

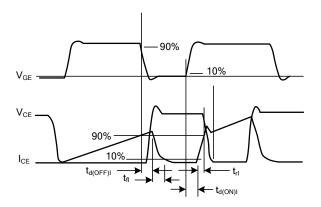


Fig 2. SWITCHING TEST WAVEFORMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.