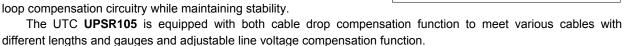


UTC UNISONIC TECHNOLOGIES CO., LTD

UPSR105


Advance

PRIMARY SIDE REGULATED SWITCHING MODE POWER SUPPLY CONTROLLER

DESCRIPTION

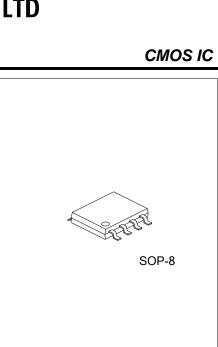
The UTC **UPSR105** is a high performance AC/DC power supply controller for battery charger and adapter applications. It can meet less than 10mW standby power for "Super Star" charger criteria. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The UTC UPSR105 provides accurate constant voltage (CV), constant current (CC) and outstanding dynamic performance without requiring an opto-coupler. It also eliminates the need of loop compensation circuitry while maintaining stability.

When UTC UPSR105 is used with 2nd-side synchronous rectification, better under-shoot performance and higher conversion efficiency can be achieved.

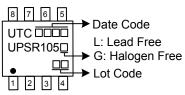
The UTC UPSR105 has internal over temperature protection for itself, and also provides dedicated pin for ex ternal over temperature protection.

FEATURES

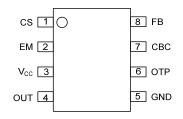

- * Primary Side Control for Eliminating Opto-coupler
- * 10mW No-load Input Power
- * Flyback Topology in DCM Operation
- * External Adjustable Line Compensation for CC
- * External Adjustable Cable Compensation for CV
- * Multiple PWM/PFM Control Mode to Improve Audio Noise Efficiency
- * V_{CS} Jitter to Reduce System EMI
- * Valley-on for the Higher Efficiency and Better EMI

ORDERING INFORMATION

- * Multiple Protections:
- -Over Voltage Protection (OVP)
- -Output Short Circuit Protection (SCP)
- -Transformer Saturation Protection (TSP) via Primary Peak
- -Current Limitation
- -OTP and External Over Temperature Protection (OTP)
- * Matching 2nd-side synchronous rectification with Schottky Synchronous Rectifier Solution


Ordering Number		Dealiana	Decking	
Lead Free	Halogen Free	Package	Packing	
UPSR105L-S08-R	UPSR105G-S08-R	SOP-8	Tape Reel	

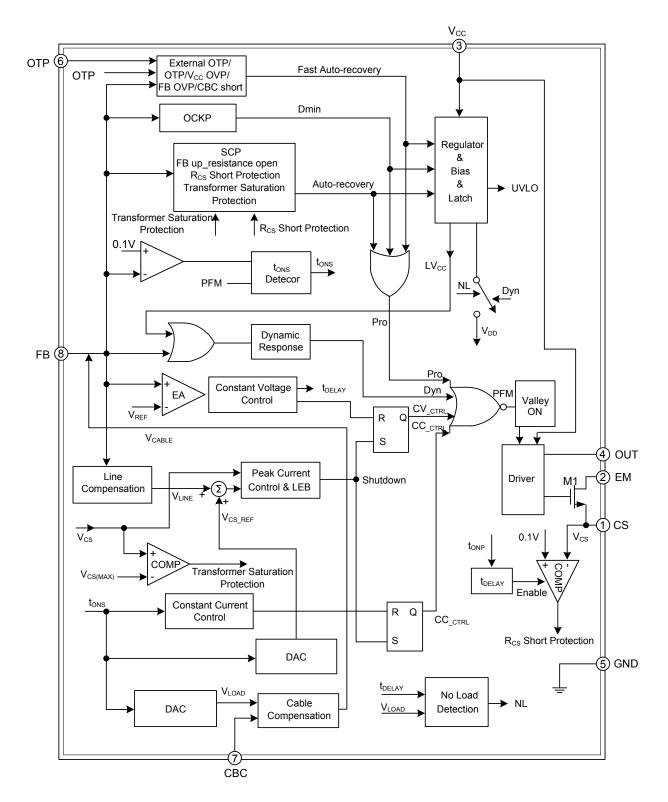
UPSR105G-S08-R (1)Packing Type (2)Package Type (3)Green Package	(1) R: Tape Reel (2) S08: SOP-8 (3) G: Halogen Free and Lead Free, L: Lead Free
--	---



UPSR105

MARKING

PIN CONFIGURATION


■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	CS	Sense primary side current for turning off the external power MOSFET and deliver a voltage proportional to the line voltage for compensation from FB pin
2	EM	Connected to the source of external power MOSFET
3	V _{cc}	The power supply for the IC. In order to get the correct operation of the IC, a capacitor with low ESR should be placed as close as possible to the V_{CC} pin
4	OUT	Turn on and turn off the external power MOSFET
5	GND	The ground of the IC
6	OTP	The external over temperature protection
7	CBC	This pin connects a resistor to GND for output cable voltage drop compensation
8	FB	Voltage feedback. The CV and CC regulation are realized based on the voltage sampling of this pin

UPSR105

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Voltage at V _{CC} to GND	V _{CC}	-0.3 ~ 30	V
Voltage at OUT, EM to GND		-0.3 ~ 22	V
Voltage at CS, CBC,OTP to GND		-0.3 ~ 7.4	V
FB Input Voltage	V _{FB}	-0.7 ~ 7.4	V
Operating Junction Temperature	TJ	-40 ~ +150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ _{JA}	100	°C/W	
Junction to Case	θις	20	°C/W	

Note: When mounted on a standard single-sided FR-4 board with 300 mm² Cu (at least 35µm thick) connected to all collectors and CS pins.

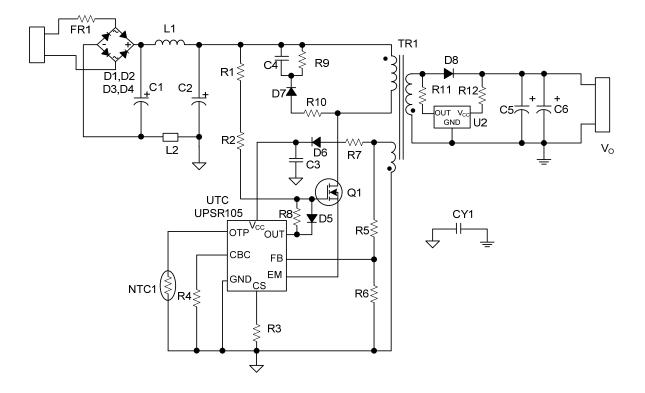
■ ELECTRICAL CHARACTERISTICS (V_{CC}=15V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
STARTUP AND UVLO SECTION								
Startup Threshold	V _{TH ST}		11	13	15	V		
Minimum Operating Voltage	V _{OPR(MIN)}		5.5	5.9	6.3	V		
STANDBY CURRENT SECTION								
Startup Current	I _{ST}	V _{CC} =V _{TH ST} -1V before Startup	0	0.5	1	μA		
Standby Current	I _{CC NL}	At No Load	5	17.5	30	μA		
Operating Current	I _{CC OPR}	Static Current	350	450	550	μA		
DRIVING OUTPUT SECTION								
Gate Voltage	V _{GATE}		9	10.5	12	V		
Peak Driver Source Current	ISOURCE PEAK		15	20.5	26	mA		
Sink Resistance	R _{DS(ON)}		2	2.3	2.6	Ω		
OPERATING FREQUENCY SECTION	(NL MODE TO) FULL LOAD)						
The Maximum Operating Frequency	f _{S(MAX)}	100% full load			80	kHz		
Sampla Tima	t _{sample H}	40% to 100% full load	4.8	5.2	5.7	μs		
Sample Time	t _{sample L}	NL Mode to 8% full load	2.4	2.7	3.0	μs		
OPERATING FREQUENCY SECTION	(NL MODE)		_	-	-	-		
CBC Pin Voltage to Enter NL Mode	V _{CBC(EN)}		55	60	65	mV		
Off Time to Enter NL Mode	t _{OFF(EN)}	From the end of t _{ONS}	168	224	280	μs		
Off Time to Exit NL Mode	t _{OFF(EX)}	From the end of t _{ONS}	168	224	280	μs		
FREQUENCY JITTER			_	-	-			
V _{CS} Modulation	$\Delta V_{CS}/V_{CS}$	NL to full load	4.5	5	5.5	%		
V _{CS} Modulation Frequency	f _{MOD}	NL to full load	1.8	2	2.2	kHz		
CURRENT SENSE SECTION			_	-	-	-		
Peak Current Sense Threshold	V _{CS H}	40% to 100% full load	537	565	593	mV		
Voltage	V _{CS L}	0% to 8% full load	243	255	267	mV		
Built-in Line Compensation Resistor	R _{LINE}	(Note 2)	108	120	132	Ω		
Leading Edge Blanking	t _{LEB}		400	625	850	ns		
CONSTANT VOLTAGE SECTION								
Feedback Threshold Voltage	V _{FB}	Closed loop test of V _{OUT}	2.45	2.50	2.55	V		
Maximum CBC Voltage for Cable Compensation	V _{CBC(MAX)}		1.4	1.45	1.5	V		

UPSR105

Advance

■ ELECTRICAL CHARACTERISTICS (Cont.)


	-	-					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
CONSTANT CURRENT SECTION							
Secondary Winding Conduction Duty	t _{ons} /t _{sw}	Tested @ V _{FB} =2V		1/2			
VALLEY-ON SECTION							
Valid Off Time of Valley-on	t _{VAL-ON}	From the end of tons	20	27	34	μs	
DYNAMIC SECTION							
Trigger Voltage for Dynamic Function	V _{TRIGGER}		40	62.5	85	mV	
Delay Time for Dynamic Function	t _{DELAY}	From the end of tons	99	127	155	μs	
Under Voltage of FB Pin for V _{CS H}	V _{UV H}		2.23	2.27	2.32	V	
PROTECTION FUNCTION SECTION							
Over Voltage Protection at FB Pin	V _{FB(OVP)}		3.5	3.75	4	V	
Over Voltage Protection at V _{CC} Pin	V _{CC(OVP)}		27	28.5	30	V	
Maximum Turn-on Time	t _{ONP(MAX)}		14	18	22	μs	
Maximum Off Time	t _{OFF(MAX)}		11	14	17	ms	
Minimum Peak Current Sense Voltage	V		135	150	165	mV	
at t _{ONP(MAX)}	V _{CS(MIN)}		155	150	105	IIIV	
Maximum EM Voltage for Transformer	V _{EM(MAX)}	(Note 1)	1.8	2	2.2	V	
Saturation Protection	▼ EM(MAX)		1.0	2	2.2	v	
Short Circuit Protection	V _{FB(SCP)}	V _{FB} @ Hiccup	1.57	1.61	1.65	V	
Minimum Typical Time under V _{FB(SCP)}	t _{SCP(MIN)}		32	43	54	ms	
Maximum Typical Time under V _{FB(SCP)}	t _{SCP(MAX)}		43	57	71	ms	
External OTP Shutdown Threshold	V _{OTP}		0.49	0.52	0.55	V	
External OTP Recovery Threshold	V _{OTP REC}		0.99	1.05	1.11	V	
External OTP Shutdown Current	I _{OTP}		94	102	110	μA	
Shutdown Temperature	T _{OTP}		+125	+135	+145	°C	
Temperature Hysteresis	T _{HYS}		+37	+40	+43	°C	
	I HYS		-	140	145		

Notes: 1. These parameters are not 100% tested, guaranteed by design and characterization.

2. Line compensation voltage on CS reference: $\Delta V_{CS_REF} = 0.35 \times \frac{R_{LINE}}{R_{FB1} + R_{LINE}} \times V_{AUX}$.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

