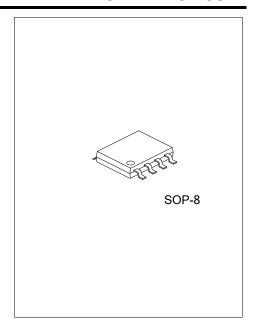
UASS103

Preliminary

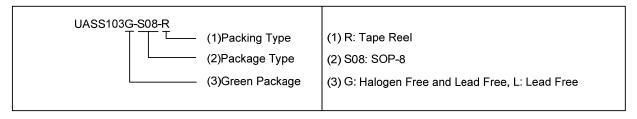
LINEAR INTEGRATED CIRCUIT

REMOVE PHANTOM POWER

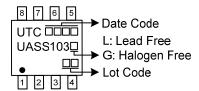

■ DESCRIPTION

The **UASS103** is designed to improve no-load consumption IC controller.

The **UASS103** is designed to reduce the no load consumption or so called Phantom power for AC Adapter, Desk Top PC power supply, TV Power Supply and others.

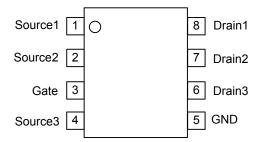

■ FEATURES

- * No load consumption can be reduced ~180mw for EPA/Climate Saver Application to reduce the phantom power.
- * Reliable and rugged
- * No V_{CC}



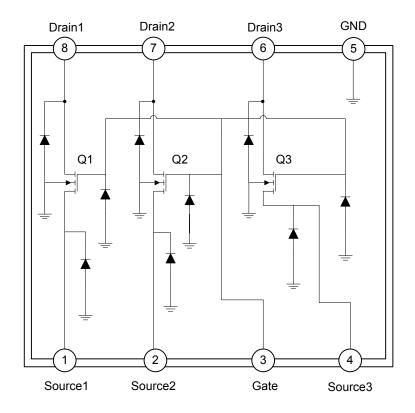
ORDERING INFORMATION

Ordering Number		Dealtons	Dealine	
Lead Free	Halogen Free	Package	Packing	
UASS103L-S08-R	UASS103G-S08-R	SOP-8	Tape Reel	



MARKING

<u>www.unisonic.com.tw</u> 1 of 4


■ PIN DESCRIPTION

■ PIN DESCRIPTION

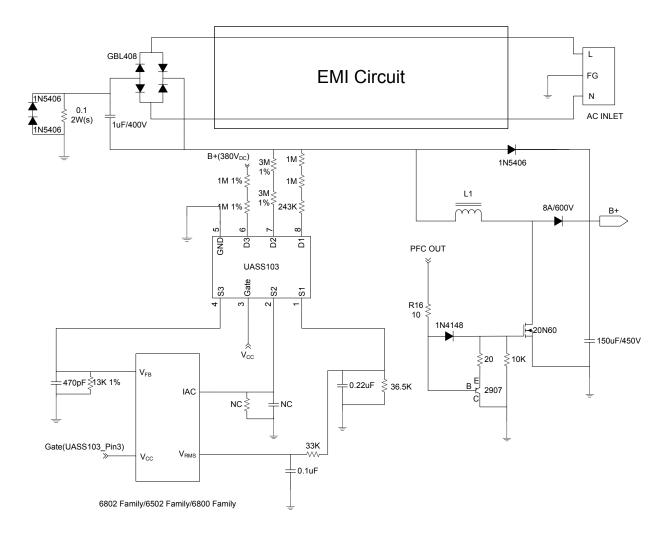
PIN NO.	PIN NAME	DESCRIPTION	
1	Source1	Source of MOSFET-1	
2	Source2	Source of MOSFET-2	
3	Gate	Common gate of MOSFET-1 & -2 & -3	
4	Source3	Source of MOSFET-3	
5	GND	Ground	
6	Drain3	Drain of MOSFET-3	
7	Drain2	Drain of MOSFET-2	
8	Drain1	Drain of MOSFET-1	

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	800	٧
Gate-Source Voltage	V_{GSS}	+20/-0.3	V
Source Pin Voltage	V _{sb}	< 8	V
Continuous Drain Current	I_D	25	mA
Pulsed Continuous Drain Current	I _{DM}	200	mA
Power Dissipation	$P_{D(MAX)}$	1.3	W
Junction Temperature	T_J	+150	°C
Storage Temperature (SOP8/DIP8)	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =40uA	800			V			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =500V, V _{GS} =0V			0.1	uA			
Gate-Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±0.1	uA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250uA$	0.9		1.3	V			
Drain Course On State Desistance (Note 1)	В	V_{GS} =5 V , I_D =1 mA		500	1000	Ω			
Drain-Source On-State Resistance (Note 1)	R _{DS(ON)}	V_{GS} =2.5 V , I_D =1 mA		530	1000	Ω			
SWITCHING CHARACTERISTICS									
Gate-Source Charge	Q_{GS}	V_{DS} =50V, V_{GS} =10V, I_{D} =25mA		6.4		nC			
Turn-On Delay Time (Note 1)	t _{D(ON)}			14		ns			
Turn-On Rise Time	t_R	V _{DS} =50V, V _{GS} =5V,		60		ns			
Turn-Off Delay Time	t _{D(OFF)}	I_D =12.5mA, R_G =3 Ω ,		38		ns			
Turn-Off Fall Time	t_{F}			280		ns			
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS									
Diode Continuous Forward Current (Note 2)	Is			25		mA			
Drain-Source Diode Forward Voltage (Note 1)	V_{SD}	I _S =25mA,V _{GS} =0V		0.81	1	V			
SOURCE CHARACTERISTICS									
Normal Operating Voltage	V_{sb}		0		7	V			
Breakdown Voltage	V_{sb}			10		V			

Note 1 : Pulse width \leq 300us, duty cycle \leq 2%.

Note 2 : Surface Mounted on 1in 2 pad area, $t \leq$ 10sec.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.