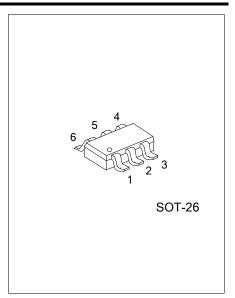


UNISONIC TECHNOLOGIES CO., LTD

UMD8511 Preliminary CMOS IC

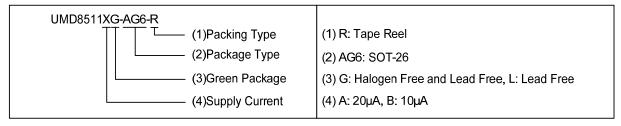

IR FILTER SWITCH DRIVER

DESCRIPTION

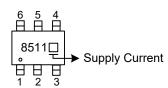
UTC **UMD8511** is an IR filter switch driver IC designed for switching IR filter in IR-Cut (ICR). With appropriate input controls, UTC **UMD8511** is made up of a one-channel, low saturation, bi-directional H-bridge driver. The protection diode circuit built in UTC **UMD8511** can minimize the disturbance caused by the feedback current when ESD impulse occurs, or when the ICR is shut down.

The typical impedance of the current switches in UTC **UMD8511** is less than 30hm. The current driven through the actuator is then determined by the impedance of the ICR. For example, with 5.0V power supply, the current through the actuator is around 300mA with 0.73V output voltage drop.

Two types of UTC **UMD8511A** or **UMD8511B** are offered to support single-wire control, dual-wire control and single-wire one-shot control modes.



■ FEATURES

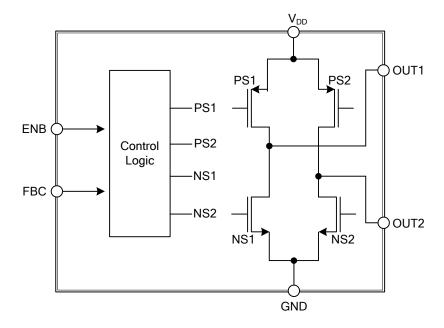

- * 1.8V input driving pulse
- * Low standby Current: IQSC<10uA
- * 2.5V~5.5V operating voltage range
- * Only one control input and Built-in non-overlap circuit to avoid the MOSFET damage caused by the fast output voltage transient

■ ORDERING INFORMATION

Ordering Number		Dealeana	Doolsing	
Lead Free	Halogen Free	Package	Packing	
UMD8511XL-AG6-R	UMD8511XG-AG6-R	SOT-26	Tape Reel	

MARKING

<u>www.unisonic.com.tw</u> 1 of 8


■ PIN CONFIGURATION


■ PIN DESCRIPTION

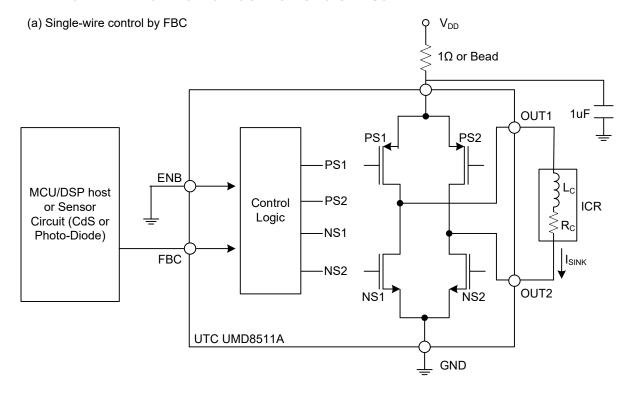
PIN NO.	PIN NAME	DESCRIPTION
4	ENB (For UMD8511A)	Low-active enable
'	CE (For UMD8511B)	External capacitor
2	GND	Ground
3	FBC	Forward/Backward control
4	OUT1	Driver output 1
5	V_{DD}	Power supply
6	OUT2	Driver output 2

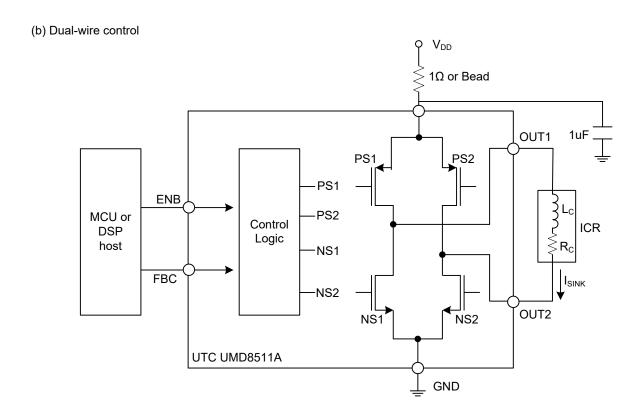
■ BLOCK DIAGRAM

UTC UMD8511A

UTC UMD8511B

ABSOLUTE MAXIMUM RATING

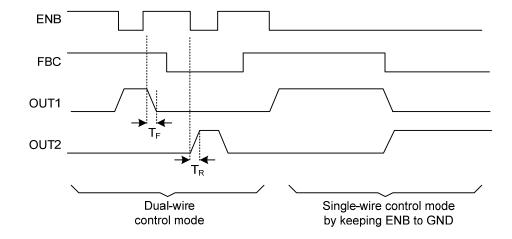

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	5.5	V
Input Voltage	V_{IN}	V _{DD} +0.4	V
Output Current (100% duty)		500	mA
Output Current (50% duty)	Іоит	600	mA
Operating Temperature Range	T_{OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STO}	-65 ~ +150	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{IN}=5V, T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V _{DD}		2.5	5.0	5.5	V
	Istb (A)	Version A			20	μA
Supply Current	I _{STB (B)}	Version B			10	μΑ
	I _{DD}	Transit State	0.7	1	1.3	mA
Driver Input Control ENB/FBC						
Input Logic "H"	VIH				1.6	V
Input Logic "L"	VIL		0.4			٧
Driver Output OUT1/OUT2						
	V _{OUT1}	I _{ОUТ} =200mA		0.42		V
Output Voltage (upper+lower)	V _{OUT2}	I _{ОUТ} =300mA		0.73		٧
	V _О Т3	I _{ОUТ} =400mA		1.03		٧
Output Rise Time	T _R			3.5	10	ns
Output Fall Time	T _F			3.5	10	ns
Propagation Delay						
ENB->OUT1/2 (ENB Rising)	T _{PLH}	V _{DD} =5V, Load=18Ω		13	16	ns

■ TYPICAL APPLICATION CIRCUIT OF UTC UMD8511A



■ TYPICAL APPLICATION CIRCUIT OF UTC UMD8511A (Cont.)

Table 1. Truth Table and Diagram of Controls

Input		OutInput		
ENB	FBC	OUT1	OUT2	
Н	X	L	L	
L	Н	Н	L	
L	L	L	Н	

■ TYPICAL APPLICATION CIRCUIT OF UTC UMD8511B

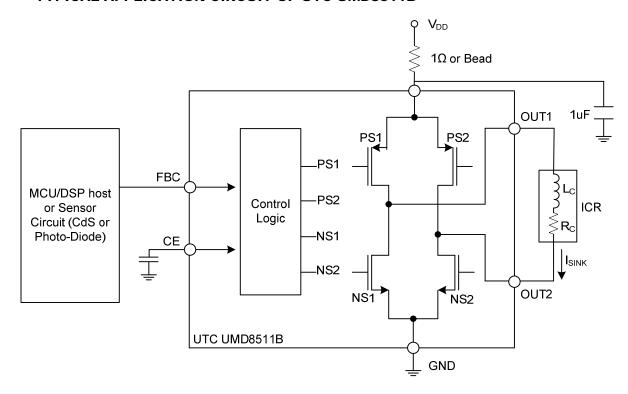
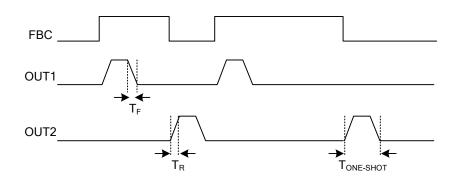



Table 2. Truth Table and Diagram of Controls

Input	Output		
FBC	OUT1	OUT2	
			

The period of T for One-Shot is determines by the external capacitor connected on C_E pin. It can be estimated from the equation.

$$T{=}2.5{\times}C_{CE\;(\mu F)}\;second$$

The time of one-shot would decrease 0.2%°C by temperature increase with the constant capacitance of C_{CE}. In fact, the capacitance of a real capacitor is affected by temperature changed and has its maximum values at 25°C. It is suggested to set the time of one-shot more than twice time that the ICR-module needs.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.