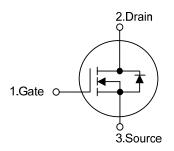


UNISONIC TECHNOLOGIES CO., LTD

10N30-HC

Preliminary

Power MOSFET


10A, 300V N-CHANNEL POWER MOSFET

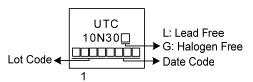
DESCRIPTION

The **UTC 10N30-HC** is a high voltage and high current power MOSFET, designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient AC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)} \le 0.7 \ \Omega$ @ $V_{GS}=10V$, $I_D=5.0A$
- * Fast switching
- * Improved dv/dt capability
- SYMBOL

TO-220


ORDERING INFORMATION

Ordering Number			Deskars	Pin Assignment			Decking	
Lead Free		Halogen Free		Package	1	2	3	Packing
10N30L-TA3-T		10N30G-TF3-T		TO-220	G	D	S	Tube
10N30L-TN3-R		10N30G-TN3-R		TO-252	G	D	S	Tape Reel
Note: Pin Assignment:	G: Gate	D: Drain	S: Source					

Note: Pin Assignment: G: Gate D: Drain S: Source

10N30G-TF3-T	(1) T: Tube, R: Tape Reel
(2)Package Type	(2) TA3: TO-220, TN3: TO-252
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

Preliminary

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	300	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous	I _D	10	А
	Pulsed (Note 2)	I _{DM}	20	А
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	27	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	1.9	V/ns
Power Dissipation	TO-220	D	60	W
	TO-252	P _D	45	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

3. L = 1.0mH, I_{AS} = 7.3A, V_{DD} = 50V, R_G = 25 Ω Starting T_J = 25°C

4. $I_{SD} \le 10A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

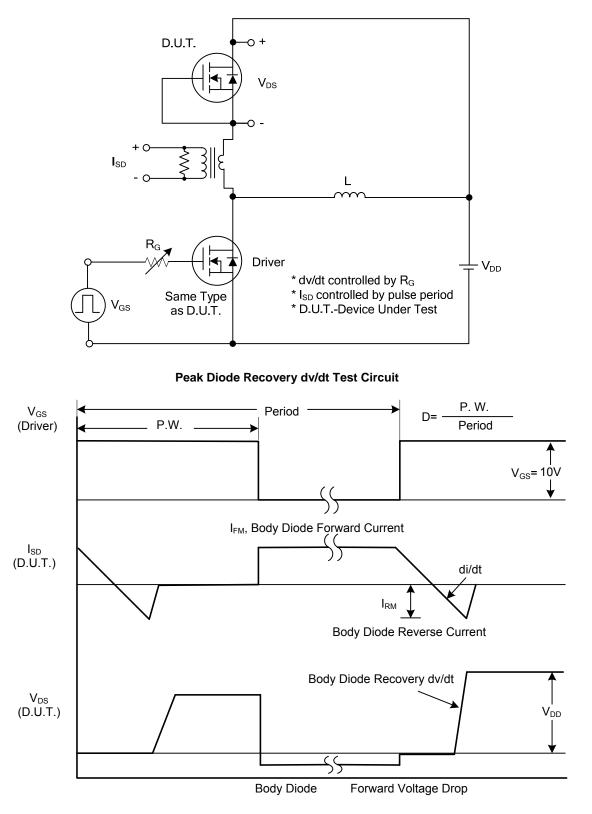
THERMAL DATA

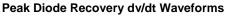
PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220	0	62.5	°C ///	
	TO-252	θ _{JA}	110	°C/W	
Junction to Case	TO-220	0	2.08	°C 1.11	
	TO-252	θ _{JC}	2.7 (Note)	°C/W	

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

10N30-HC

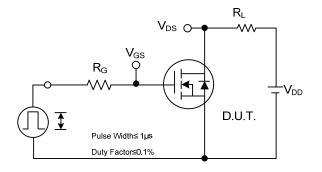
■ ELECTRICAL CHARACTERISTICS (T_J = 25°C, unless otherwise specified)

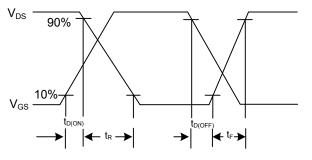

$\begin{array}{ c c c c c c c c } \hline OFF CHARACTERISTICS \\ \hline Drain-Source Breakdown Voltage & BV_{DSS} & V_{GS}=0V, I_{D}=250\mu A & 300 \\ \hline Drain-Source Leakage Current & I_{DSS} & V_{DS}=300V, V_{GS}=0V & \hline \\ \hline Gate-Source Leakage Current & Forward \\ \hline Reverse & I_{GSS} & V_{GS}=30V, V_{DS}=0V & \hline \\ \hline ON CHARACTERISTICS & & & & & & & & \\ \hline Gate Threshold Voltage & V_{GS(TH)} & V_{DS}=V_{GS}, I_{D}=250\mu A & 2.0 & \hline \\ \hline Static Drain-Source On-State Resistance & R_{DS(ON)} & V_{GS}=10V, I_{D}=5.0A & \hline \\ \hline DYNAMIC CHARACTERISTICS & & & & & & \\ \hline Input Capacitance & C_{ISS} & & & & & & & & \\ \hline Output Capacitance & C_{GSS} & & & & & & & & & & \\ \hline SwitCHING CHARACTERISTICS & & & & & & & & & & & & & \\ \hline Total Gate Charge (Note 1) & Q_G & & & & & & & & & & & & & & & & \\ \hline Gate-Drain Charge & Q_{GS} & & & & & & & & & & & & & & & & & & &$	TYP 436.9 66.8	MAX 10 100 -100 4.0 0.7	V μA nA nA V Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		100 -100 4.0	μA nA nA V
$\begin{array}{ c c c c c c } \hline Drain-Source Leakage Current & I_{DSS} & V_{DS}=300V, V_{GS}=0V & & & & \\ \hline Gate-Source Leakage Current & Forward & I_{GSS} & V_{GS}=30V, V_{DS}=0V & & & \\ \hline Gate-Source Leakage Current & Forward & & & \\ \hline Reverse & I_{GSS} & V_{GS}=30V, V_{DS}=0V & & & \\ \hline ON CHARACTERISTICS & & & & \\ \hline Gate Threshold Voltage & V_{GS(TH)} & V_{DS}=V_{GS}, I_{D}=250\mu A & 2.0 & \\ \hline Static Drain-Source On-State Resistance & R_{DS(ON)} & V_{GS}=10V, I_{D}=5.0A & & \\ \hline DYNAMIC CHARACTERISTICS & & & \\ \hline Input Capacitance & C_{ISS} & & \\ \hline Output Capacitance & C_{OSS} & & \\ \hline Reverse Transfer Capacitance & C_{RSS} & & \\ \hline SWITCHING CHARACTERISTICS & & & \\ \hline Total Gate Charge (Note 1) & Q_G & \\ \hline Gate-Drain Charge & Q_{GS} & \\ \hline Gate-Drain Charge & Q_{GD} & \\ \hline Turn-on Delay Time (Note 1) & & \\ \hline Rise Time & & \\ \hline t_R & & \\ \hline V_{DD}=100V, V_{GS}=10V, , & & \\ \hline \end{array}$		100 -100 4.0	nA nA V Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-100 4.0	nA V Ω
Gate-Source Leakage CurrentReverseIGSS $V_{GS}=-30V, V_{DS}=0V$ ON CHARACTERISTICSGate Threshold Voltage $V_{GS(TH)}$ $V_{DS}=V_{GS}, I_D=250\mu A$ 2.0Static Drain-Source On-State Resistance $R_{DS(ON)}$ $V_{GS}=10V, I_D=5.0A$ 2.0DYNAMIC CHARACTERISTICSInput Capacitance C_{ISS} $V_{GS}=0V, V_{DS}=25V, f=1.0$ 43Output Capacitance C_{OSS} W_{HZ} 44Output Capacitance C_{CSS} W_{HZ} 44SWITCHING CHARACTERISTICS $W_{DS}=0V, V_{DS}=25V, f=1.0$ 44Gate Charge (Note 1) Q_G $V_{DS}=240V, V_{GS}=10V, I_D=10A$ 44Gate-Drain Charge Q_{GD} $V_{DS}=240V, V_{GS}=10V, I_D=10A$ 44Gate-Drain Charge Q_{GD} $V_{DD}=100V, V_{GS}=10V, I_D=10A$ 44Turn-on Delay Time (Note 1) $T_{D(ON)}$ $V_{DD}=100V, V_{GS}=10V, I_D=10V, I_D=10A$ 44Rise Time T_R $V_{DD}=100V, V_{GS}=10V, I_D=10V, I_D=$		4.0	V Ω
			Ω
Static Drain-Source On-State Resistance $R_{DS(ON)}$ $V_{GS}=10V, I_D=5.0A$ DYNAMIC CHARACTERISTICSInput Capacitance C_{ISS} Output Capacitance C_{OSS} Reverse Transfer Capacitance C_{RSS} SWITCHING CHARACTERISTICSTotal Gate Charge (Note 1) Q_G Gate-Drain Charge Q_{GS} Turn-on Delay Time (Note 1) $t_D(ON)$ Rise Time t_R V_DD=100V, V_GS=10V, I4Rise Time t_R			Ω
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.7	
$\begin{tabular}{ c c c c c } \hline DYNAMIC CHARACTERISTICS \\ \hline Input Capacitance & C_{ISS} & $V_{GS}=0V, V_{DS}=25V, f=1.0$ & 43 \\ \hline Output Capacitance & C_{OSS} & MHz & 1.0 & MHz & 1.0 & 66 \\ \hline Reverse Transfer Capacitance & C_{RSS} & MHz & 1.0 & 1.0 & MHz & 1.0 & 1.0 & 1.0 & MHz & 1.0 & 1			~F
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		1	nЕ
Output Capacitance C_{OSS} Reverse Transfer Capacitance MHz 66Reverse Transfer Capacitance C_{RSS} MHz 4SWITCHING CHARACTERISTICS Q_G Total Gate Charge (Note 1) Q_G Q_{GS} $V_{DS}=240V, V_{GS}=10V, I_D=10A$ $I_G=1mA$ (Note 1, 2)1Gate-Drain Charge Q_{GD} $I_G=1mA$ (Note 1, 2)4Turn-on Delay Time (Note 1) $t_{D(ON)}$ $Rise Time4$	66.8		pF
Reverse Transfer Capacitance C_{RSS} INTIZ4SWITCHING CHARACTERISTICSTotal Gate Charge (Note 1) Q_G $V_{DS}=240V, V_{GS}=10V, I_D=10A$ 1Gateource Charge Q_{GS} $I_G=1mA$ (Note 1, 2)4Gate-Drain Charge Q_{GD} $I_G=1mA$ (Note 1, 2)4Turn-on Delay Time (Note 1) $t_{D(ON)}$ 4Rise Time t_R $V_{DD}=100V, V_{GS}=10V, I_D$ 4			рF
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	4.6		рF
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
Gateource Charge Q_{GS} IG=1mA (Note 1, 2)Gate-Drain Charge Q_{GD} IG=1mA (Note 1, 2)Turn-on Delay Time (Note 1) $t_{D(ON)}$ Rise Time t_R VDD=100V, VGS=10V,,1	13.3		nC
Gate-Drain Charge Q_{GD} Z_{GD} Turn-on Delay Time (Note 1) $t_{D(ON)}$ Rise Time t_R V_{DD} =100V, V_{GS} =10V,,	4.8		nC
Rise Time t_R V_{DD} =100V, V_{GS} =10V,,1	1.6		nC
	5.8		ns
Turn-off Delay Time $t_{D(OFF)}$ I _D =10A, R _G =25 Ω (Note 1, 2) 2	16.4		ns
5 (6:1)	24.6		ns
Fall-Time t _F 2	20.6		ns
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS			
Maximum Continuous Drain-Source Diode		10	А
Forward Current		10	~
Maximum Pulsed Drain-Source Diode		20	А
Forward Current 'SM		20	~
Drain-Source Diode Forward Voltage (Note 1) V _{SD} V _{GS} =0V, I _S =10A		1.4	V
Reverse Recovery Time (Note 1) t_{rr} V_{GS} =0V, I_{S} =10A,1	158		ns
Reverse Recovery Charge Q _{rr} dI _F /dt=100A/µs (Note1) 1			μC

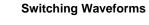

Notes: 1. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2%.

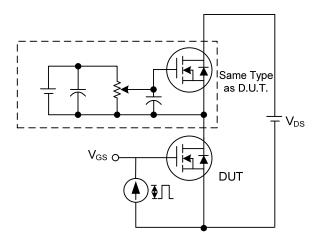
2. Essentially independent of operating temperature.

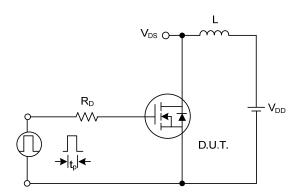
TEST CIRCUITS AND WAVEFORMS



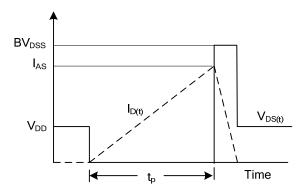



10N30-HC


TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

