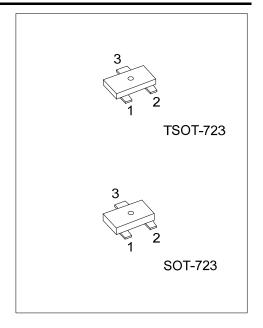
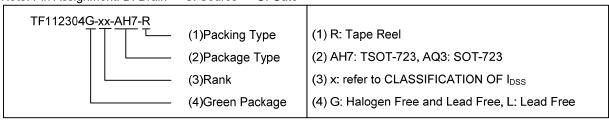
TF112304 JFET


ELECTRET CAPACITOR MICROPHONE APPLICATIONS

DESCRIPTION

The UTC **TF112304** uses advanced trench technology to provide excellent $R_{DS\,(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use in capacitor microphone applications.

■ FEATURES


- * is suitable for electret capacitor microphone
- * Very low noise

■ ORDERING INFORMATION

Ordering Number		Daakaaa	Pin Assignment			De alsia a	
Lead Free	Halogen Free	Package	1	2	3	Packing	
TF112304L-xx-AH7-R	TF112304G-xx-AH7-R	TSOT-723	D	S	G	Tape Reel	
TF112304L-xx-AQ3-R	TF112304G-xx-AQ3-R	SOT-723	D	S	G	Tape Reel	

Note: Pin Assignment: D: Drain S: Source G: Gate

MARKING

TF112304-JB	TF112304-JC		
<u> </u>	<u> </u>		
JB	JC		

TF112304 JFET

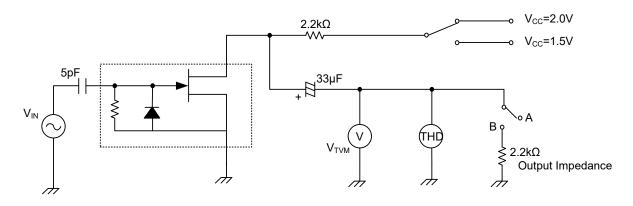
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATING	UNIT
Gate Drain Voltage	V_{GDO}	-20	V
Gate Current	lg	10	mA
Drain Current	I _D	10	mA
Power Dissipation	P _D	100	mW
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Gate Drain Breakdown Voltage	BV _{GDO}	I _G =-100μA	-20			V
Gate Source Cut off Voltage	V _{GS(OFF)}	V _{DS} =2V, I _D =1μA, I _{DSS} =250μA		-0.6		V
Drain Current	I _{DSS}	V _{DS} =2V, V _{GS} =0V	140		350	μΑ
Forward Transfer Admittance	lyfsl	V _{DS} =2V, V _{GS} =0V, I _{DSS} =250μA		1.0		mS
Input Capacitance	Ciss	V _{DS} =2V, V _{GS} =0V, f=1MHz		3.5		pF
Voltage Gain	G∨	V_{DD} =2V, R_L =2.2k Ω , C_g =5pF, f=1KHz V_{IN} =10mV, I_{DSS} =250 μ A		-1.5		dB
Frequency Characteristic	$\triangle G_{Vf}$	V_{DD} =2V, R _L =2.2k Ω , C _g =5pF, f=1KHz to 110Hz, V _{IN} =10mV			-1.0	dB
Reduced Voltage Characteristic	∆Gvv	V_{DD} =2V to 1.5V, R _L =2.2k Ω , C _g =5pF, f=1KHz, V _{IN} =10mV		1.0	2.0	dB
Output Resistance	Zo	V_{DS} =2V, f=1MHz, R _L =2.2k Ω			2.2	kΩ
Output Noise Voltage	V _{NO}	V_{DD} =3V, R_L =2.2k Ω , C_g =5pF, A-Curve Filter, R_L =2.2k Ω			-103	dB
Total Harmonic distortion	THD	V_{DD} =2V, R _L =2.2k Ω , C _g =5pF, f=1KHz, V _{IN} =50mV, I _{DSS} =250 μ A		1.0		%


■ CLASSIFICATION OF I_{DSS}

RANK	В	С
I _{DSS} (µA)	140 ~ 240	210 ~ 350

TF112304 JFET

■ TEST CIRCUIT

Voltage Gain Frequency Characteristics Distortion Reduced Voltage Characteristics Output Noise Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.