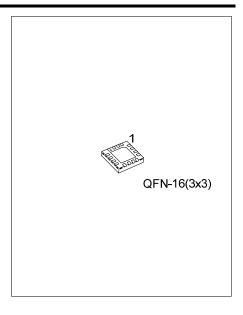
UNISONIC TECHNOLOGIES CO., LTD

L8403

LINEAR INTEGRATED CIRCUIT

4 STAGE FET LNA BIAS CONTROLLER

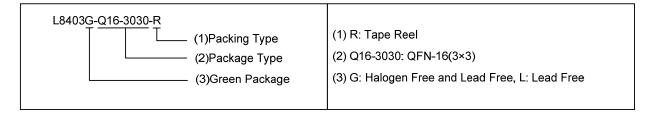

DESCRIPTION

The UTC L8403 is an advanced GaAs and HEMT FETs bias controller. It is designed to operate from minimal supply rails and intended primarily for satellite Low Noise Blocks (LNBs).

The UTC L8403 provides drain voltage and current control for up to 4 external grounded source FETs with the addition of one capacitor and two resistors.

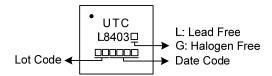
The UTC L8403 is generating the regulated negative rail required for FET gate biasing whilst operating from a single supply of 2.1V to 5.5V.

The -2V negative bias can also be used to supply other external circuits. The UTC L8403 uses two resistors to split control between two pairs of FETs and set drain currents. This allows the operating current of input FETs to be adjusted to minimize noise, whilst the following FET stages can separately be adjusted for maximum gain.

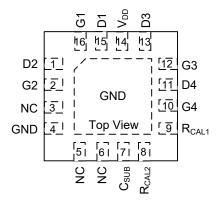


FEATURES

- * Provides Bias for up to 4 GaAs and HEMT FETs
- * Operating Range of 2.1V to 5.5V
- * Ultra-low Operating Current of 0.95mA
- * Dynamic FET Protection
- * Amplifier FET Drain Voltages set at 2.0V
- * Regulated Negative Rail Generator Requires only 1 External Capacitor
- * Expended Temperature Range of -40°C to +105°C

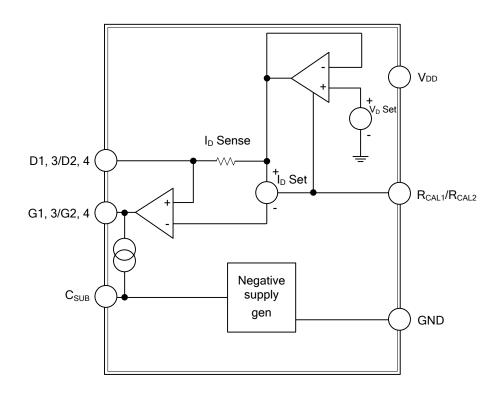

ORDERING INFORMATION

Ordering Number		Doolsons	Do akin n	
Lead Free	Halogen Free	Package	Packing	
L8403L-Q16-3030-R	L8403G-Q16-3030-R	QFN-16(3×3)	Tape Reel	



www.unisonic.com.tw 1 of 7

MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1	D2	To Drain of FET 2	
2	G2	To Gate of FET 2	
3	NC	No Connection	
4	GND	Ground	
5	NC	No Connection	
6	NC	No Connection	
7	Csub	Negative rail reservoir capacitor	
8	R _{CAL2}	Drain current setting for D2 and D4	
9	R _{CAL1}	Drain current setting for D1 and D3	
10	G4	To Gate of FET 4	
11	D4	To Drain of FET 4	
12	G3	To Gate of FET 3	
13	D3	To Drain of FET 3	
14	V_{DD}	Supply voltage	
15	D1	To Drain of FET 1	
16	G1	To Gate of FET 1	
Pad	GND	Must be connected to Ground or No Connection	

■ BLOCK DIAGRAM

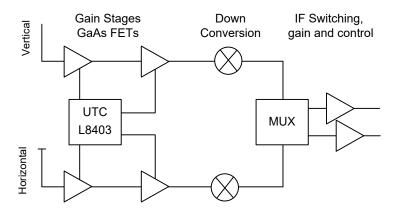
■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL RATINGS		UNIT
Supply Voltage	V_{DD}	-0.6 ~ +6	V
Supply Current	I _{DD}	100	mA
Power Dissipation	P _D	650	mW
Junction Temperature	TJ	+135	°C
Storage Temperature Range	T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (Note 5)

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Voltage Range	V_{DD}	2.1 ~ 5.5	V
Operating Temperature Range	T _A	-40 ~ +105	°C


■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{DD}=2.3V, R_{CAL1}=R_{CAL2}=33k\Omega, setting I_{D1} to I_{D4} set to 10mA.)$

TA-20 0, VDD-2:0V, TCALT-TCALZ-OOKSZ, SERRING IDT to ID4 Set to Toffix.)							
PARAMETER	PARAMETER SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNIT	
unally Command	I _{DD}	I _{D1-4} =0		0.95	2.0	mA	
Supply Current	I _{DD(L)}	I _{D1-4} =10mA			45	mA	
Substrata Valtaga (Nota 2)	Vcsub	I _{CSUB} =0	-2.5	-2.0	-1.5	V	
Substrate Voltage (Note 2)	Vcsub(L)	I _{CSUB} =-20µA			-1.5	V	
GATE CHARACTERISTICS							
Gate (G1 to G4)							
Current Range	lg		-50		60	μΑ	
Voltage Low	oltage Low V _{G(L)} I _D =12mA, I _G =		-2.5	-2.0	-1.5	V	
/oltage High V _{G(H)} I		$I_D=8.0mA, I_G=0$	0	0.7	1.0	V	
DRAIN CHARACTERISTICS							
Drain (D1 to D4)							
Current Range	ID	D1 and D4	4		15	mA	
Current Operating (Note 1)	t Operating (Note 1) I _{D(OP)} Standard Application Circuit		8	10	12	mA	
Voltage Operating (Note 4)	$V_{D(OP)}$	I _D =9.0mA	1.8	2.0	2.2	V	
delta V _D vs. V _{DD}	dV_D/dV_{DD} $V_{DD} = 2.3V\sim5.5V$			0.15		%/V	
delta I _D vs. V _{DD}	dI_D/dV_{DD}	$V_{DD} = 2.3V \sim 5.5V$		1.5		%/V	
delta V_D vs. T_A dV_D/dT_A		T _A = -40°C~+105°C		150		ppm	

- Notes: 1. Characteristics are measured using up to two external reference resistors, RCAL1 and RCAL2.
 - 2. The negative bias voltages are generated on-chip using an internal oscillator. An external 47nF capacitor is required for this purpose.
 - 3. Noise voltage measurements are made with FETs and gate and drain capacitors of value 10nF in place. Noise voltages are not measured in production.
 - 4. The maximum operating drain voltage is equal to V_{DD} or $V_{D(OP)}$ max whichever is lower.
 - 5. ESD sensitive, handling precautions are recommended.

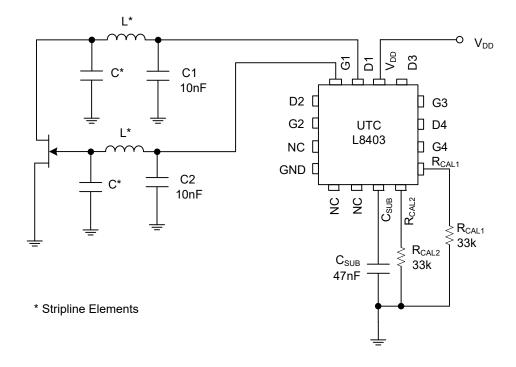
TWIN LNB SYSTEM DIAGRAM

■ DEVICE DESCRIPTION

The UTC L8403 is designed to meet the bias requirements of GaAs and HEMT FETs commonly used in satellite receiver LNBs with a minimum of external components whilst operating from a minimal voltage supply and using minimal current.

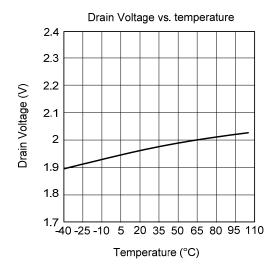
The UTC **L8403** has four FET bias stages that can be programmed to provide a constant drain current. Programming of the FET bias stage arrangement. The operating current of each FET group is achieved by resistors connected to the R_{CAL1} and R_{CAL2} pins. It is allowing input FETs to be biased for optimum noise, amplifier FETs for optimum gain. Amplifier FETs can be operated at currents in the range 4 to 15mA. D1 and D3 can be programmed with R_{CAL1} over the range of 4 to 15mA. D2 and D4 are programmed with R_{CAL2} .

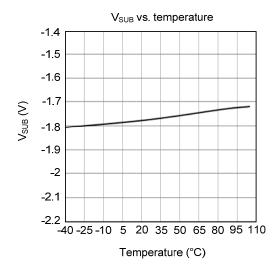
Drain voltages of amplifier stages are set at 2.0V and are current limited to approximately current set by their associated R_{CAL} resistors.

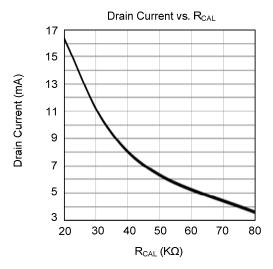

Depletion mode FETs require a negative voltage bias supply when operated in grounded source circuits. The UTC **L8403** includes an integrated switched capacitor DC-DC converter generating a regulated output of -2V to allow single supply operation. The UTC **L8403** has been designed to be used with supply rails of 2.1V to 5.5V and the V_{DD} range has been extended to 5.5V to allow for 10% supply variation.

It is possible to use less than the full complement of FET bias controls, unused drain and gate connections can be left open circuit without affecting operation of the remaining bias circuits.

To protect the external FETs the circuits have been designed to ensure that, under any conditions including power up/down transients, the gate drive from the bias circuits cannot exceed -2.5V. Additionally each stage has its own individual current limiter. Furthermore if the negative rail experiences a fault condition, such as overload or short circuit, the drain supply to the FETs will be limited, avoiding excessive current flow.


Device operating temperature is -40°C to +105°C to suit a wide range of environmental conditions.


■ TYPICAL APPLICATION CIRCUIT



■ TYPICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{DD}=2.3V, R_{CAL1}=R_{CAL2}=33k\Omega$ (setting I_D to 10mA), unless otherwise specified.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.