

UTC UNISONIC TECHNOLOGIES CO., LTD

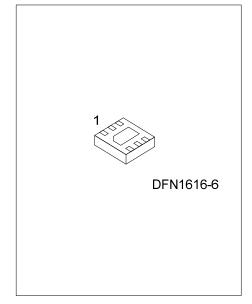
UB3860

BATTERY VOLTAGE AND CURRENT PROTECTION IC

DESCRIPTION

UTC UB3860 is a battery protection ICs featured for accurately monitoring Li-ion or Li-Polymer battery voltage and current when charging and discharging the batteries. When over charge, over discharge and short circuit conditions happened, UTC UB3860 battery protection ICs will control the charging or discharging output pins to control charge or discharge MOSFETs to cut off the charging or discharging path accordingly to protect the batteries from being damaged.

UTC UB3860 battery protection ICs monitor the charge/discharge/short circuit current by external current sensing resistor, to provide very precise current sensing control.

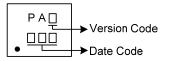

UTC UB3860 battery protection IC embeds with high ESD protection circuit to prevent from ESD issues in mass production and in use.

UTC UB3860 battery protection IC power consumption when normal operation is low. For power saving, UTC UB3860 battery protection IC provides 2 power saving modes: Standby mode and Power Down mode.

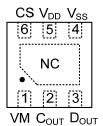
FEATURES

- * Voltage detection and release Overcharge Detection Voltage **Overcharge Release Voltage Overdischarge Detection Voltage** Overdischarge Release Voltage
- * Current detection and release **Discharge Overcurrent Detection Voltage Charge Overcurrent Detection Voltage** Load Short-Circuit Detection Voltage

ORDERING INFORMATION


- * 0V Battery Charge Inhibition Battery Voltage * Operation Modes
- Normal Mode: 2.5uA (Typ.), 4.0uA (Max.) Standby Mode: 1.0uA (Typ.), 1.5uA (Max.) Power Down Mode: 0.1uA (Max.)

Ordering	Number	Daakaga	Decking
Lead Free	Halogen Free	Package	Packing
UB3860L-xx-K06-1616-R	UB3860G-xx-K06-1616-R	DFN1616-6	Tape Reel
Note: xx: Serial Code, refer PRC			


UB3860G-xx-K06-1616-R (1) Packing Type (2) Package Type (3) Serial Code 2 (4) Serial Code 1 (5) Green Package	 (1) R: Tape Reel (2) K06-1616: DFN1616-6 (3) x: Refer to Delay Times (4) x: Refer to Enable/Disable and Detection / Release (4) G : Halogen Free and Lead Free, L: Lead Free
--	--

UB3860

MARKING

PIN CONFIGURATION

DFN1616-6 (TOP VIEW)

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	VM	nput pin for charger negative voltage.			
2	C _{OUT}	arge FET Gate Drive Output.			
3	D _{OUT}	ischarge FET Gate Drive Output.			
4	V _{SS}	Ground.			
5	V _{DD}	Input pin for positive power supply voltage.			
6	CS	Over-current detection input pin.			
Exposed PAD	NC	Thermal pad.			

PRODUCT LINE UP

CODE 1	0V Battery Charge Inhibition Battery Voltage Enable/Disable	0V Battery Charge Permission Battery Voltage Enable/Disable	OverchargeRelease Voltage Latch Enable/Disable	Overcharge Release Voltage Hysteresis Enable/Disable	Power Down Mode Enable/Disable	Overcharge Detection Voltage	Overcharge Release Voltage	Overdischarge Detection Voltage	Overdischarge Release Voltage	Discharge Overcurrent Detection Voltage	Charge Overcurrent Detection Voltage	Load Short Circuit Detection Voltage	0V Battery Charge Inhibition Battery Voltage	0V Battery Charge Permission Battery Voltage	Delay Times
	.,	.,				V _{det1}	V _{det1Rel}	V _{det2}	V _{det2Rel}	V_{det3}	V_{det4}	V_{Short}	V _{0INH}	$V_{0 \text{CHG}}$	
	V _{0INH}	V _{0CHG}	V _{det1RelEN}	V _{det1RelHEN}	M _{PD}	V	V	V	V	mV	mV	mV	V	V	-
UB3860-A	Enable	Disable	Disable	Enable	Disable	4.475	4.275	2.500	2.900	15	-15	33	0.9		А

Table 1. Enable/Disable and Detection / Release

Table 2. Delay Times

	Overeberge	Overeberge	Querralite ette enner	O	Discharge	Discharge	Charge	Charge	Load Short
	Detection	Release	Overdischarge Detection	Release	Overcurrent	Overcurrent	Overcurrent	Overcurrent	Circuit
CODE 2		Delav Time		Delav Time	Detection	Release	Detection	Release	Detection
	,	[tV _{det1Rel}](ms)	,	[tV _{det2Rel}](ms)	Delay Time	Delay Time	Delay Time	Delay Time	Delay Time
	[[v _{det1}](3)	[tv det1Rel](IIIS)	[tv _{det2}](IIIS)	[tv det2Rel](IIIS)	[tV _{det3}](ms)	[tV _{det3Rel}](ms)	[tV _{det4}](ms)	[tV _{det4Rel}](ms)	[V _{Short}](µs)
А	1.0	3	32	1.5	68	6	16	4.5	250

■ ABSOLUTE MAXIMUM RATING (V_{SS}=0V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	-0.3 ~ 6	V
Negative Voltage Input	V _{VM}	V _{DD} -28 ~ V _{DD} +0.3	V
Charge FET Control	V _{COUT}	V _{DD} -28 ~ V _{DD} +0.3	V
Discharge FET Control	V _{DOUT}	-0.3 ~ V _{DD} +0.3	V
Current Sense Input	V _{CS}	-0.3 ~ V _{DD} +0.3	V
Storage Temperature	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V _{OP}		1.5		5.5	V
Operating Temperature	T _{OPR}		-40		+85	°C

ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
CURRENT CONSUMPTION										
I _{Normal}	I _{Normal}	V_{DD} =3.5V, V_{CS} =0V, V_{VM} =0V		2.5	4	μA				
I _{Standby}	I _{Standby}	V_{DD} =1.5V, V_{CS} =0V, V_{VM} =1.5V		1	1.5	μA				
I _{Power_Down}	I _{Power_Down}	V _{DD} =1.5V, V _{CS} =0V, V _{VM} =1.5V			0.1	μA				
RESISTANCES										
R _{VMD} :VM pin Pull-up Resistance		V_{DD} =1.8V, V_{CS} =0V, V_{VM} =0V		312	624	kΩ				
R _{VMS} : VM pin Pull-down Resistance		V _{DD} =3.5V, V _{CS} =0V, V _{VM} =1V		23	46	kΩ				
R _{сон} : C _{оит} pin Pull-up Resistance		V_{DD} =3.5V, V_{CS} =0V, V_{VM} =0V, V_{COUT} =3V		4.5	9	kΩ				
R _{COL} : C _{OUT} pin Pull-down Resistance		V_{DD} =4.5V, V_{CS} =0V, V_{VM} =0V, V_{COUT} =3V		3.1	6.2	kΩ				
R _{DOH} : D _{OUT} pin Pull-up Resistance		V_{DD} =3.5V, V_{CS} =0V, V_{VM} =0V, V_{DOUT} =3V		1.6	3.2	kΩ				
R _{DOL} : D _{OUT} pin Pull-down Resistance		V_{DD} =1.8V, V_{CS} =0V, V_{VM} =0V, V_{DOUT} =0.5V		2.1	4.2	kΩ				
R _{CS} : CS pin Input Resistance		V _{DD} =3.5V, V _{CS} =0.05V, V _{VM} =0V		117	234	kΩ				
0V BATTERY CHARGE PERMISS	ION FUNCT	ION								
V _{0CHG}	V _{0CHG}		0.5	0.9	1.3	V				
0V BATTERY CHARGE INHIBITIC	N FUNCTIO	N								
Voinh	V _{0INH}		0.5	0.9	1.3	V				

■ **BATTERY PROTECTION ACCURACY** (T_A=25°C, unless otherwise specified)

					1	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Overcharge Detection Voltage	V _{det1}		-0.015	V _{det1}	+0.015	V
Overcharge Release Voltage	V _{det1Rel}		-0.020	V _{det1Rel}	+0.020	V
Overdischarge Detection Voltage	V _{det2}		-0.025	V _{det2}	+0.025	V
Overdischarge Release Voltage	V _{det2Rel}		-0.030	V _{det2Rel}	+0.030	V
Discharge Overcurrent Detection Voltage	V _{det3}		-0.001	V _{det3}	+0.001	V
Discharge Overcurrent Release Voltage	V _{det3Rel}	Release condition: Base onVM voltage to release		V _{det3Rel}		V
Charge Overcurrent Detection Voltage	V _{det4}		-0.001	V _{det4}	+0.001	V
Charge Overcurrent Release Voltage	V _{det4Rel}	Release condition: Base onVM voltage to release		V _{det4Rel}		V
Load Short Circuit Detection Voltage	V _{Short}		-0.005	V_{Short}	+0.005	V
Load Short Circuit Release Voltage	V _{SCRel}	Release condition: Base onVM voltage to release		V_{SCRel}		V
0V Battery Charge Inhibition Battery Voltage	V _{0INH}		-0.400	V _{0INH}	+0.400	V
0V Battery Charge Permission Battery Voltage	V _{0CHG}		-0.400	V _{0CHG}	+0.400	V

■ BATTERY PROTECTION DETECTION DELAY TIME ACCURACY

(T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Overcharge Detection Delay Time	tV _{det1}		-30%	tV _{det1}	+30%	s
Overcharge Release Delay Time	tV _{det1Rel}		-30%	tV _{det1Rel}	+30%	ms
Overdischarge Detection Delay Time	tV_{det2}		-30%	tV_{det2}	+30%	ms
Overdischarge Release Delay Time	tV _{det2Rel}		-30%	tV _{det2Rel}	+30%	ms
Discharge Overcurrent Detection Delay Time	tV_{det3}		-30%	tV _{det3}	+30%	ms
Discharge Overcurrent Release Delay Time	tV _{det3Rel}		-30%	tV _{det3Rel}	+30%	ms
Charge Overcurrent Detection Delay Time	$\mathrm{tV}_{\mathrm{det4}}$		-30%	tV _{det4}	+30%	ms
Charge Overcurrent Release Delay Time	tV _{det4Rel}		-30%	tV _{det4Rel}	+30%	ms
Load Short Circuit Detection Delay Time	tV _{Short}		-50%	tV _{Short}	+50%	us

DESCRIPTION OF OPERATION

Based on different test items, the test circuits are different and shown as below. C_{OUT} pin and D_{OUT} pin are used as control pins to turn on or turn off the external charge and discharge MOSFETs. When C_{OUT} pin or D_{OUT} pin is output "L", the external MOSFET is turned off. The charge or discharge paths are cut off. At this time, charging or discharging the battery is not allowed. When the abnormal situation is released, the C_{OUT} pin or D_{OUT} pin will output "H" to turn on the MOSFET to allow the battery to be charged or discharged.

Initially, the C_{OUT} and D_{OUT} pins are output "H" to ensure the battery can be charged or discharged. V_{DD} pin in the test circuit can be treated as battery voltage.

Overcharge Detection and Release

The overcharge detection voltage is measured by the test circuit 1 and shown as below. Test steps :

- 1. Set V_{DD} voltage to 3.60V and CS to 0V.
- 2. Increase V_{DD} voltage gradually.
- 3. When the voltage on V_{DD} is increased, exceeds the Vdet1 detection voltage and the detection delay time (tV_{det1}) expired, C_{OUT} pin will transition from "H" to "L".
- 4. At this moment, enter the charging overvoltage protection state.
- 5. Then test charging overvoltage release measurement.
- 6. Decrease V_{DD} voltage gradually.
- 7. When the voltage on V_{DD} changes and is lower than V_{det1Rel} and the delay time expired tV_{det1Rel}, C_{OUT} pin will transition from "L" to "H".
- 8. There are two conditions as below.
- (1) System connects load :

When the battery voltage is lower than V_{det1} and VM pin voltage is higher than 0.25V(typical) and the delay time expired tV_{det1Rel}, overcharge condition is released.

(2) Charger remove :

When the battery voltage is lower than $V_{det1Rel}$ and VM pin voltage is lower than 0.25V(typical) and the delay time expired $tV_{det1Rel}$, overcharge condition is released

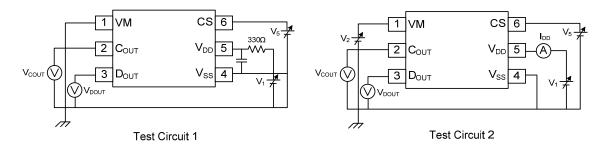
Overdischarge Detection and Release

The overdischarge detection voltage is measured by the test circuit 2 and shown as below. Test steps :

- 1. Set V_{DD} voltage to 3.60V and CS=VM to 0V.
- 2. Decrease V_{DD} voltage gradually
- 3. When the voltage on V_{DD} is decreased, goes lower than the V_{det2} detection voltage and the detection delay time (tV_{det2}) expired, D_{OUT} pin will transition from "H" to "L".
- 4. At this moment, enter the discharge overvoltage protection state
- 5. Then test discharge overvoltage release measurement
- 6. Increase V_{DD} voltage gradually
- 7. When the voltage on V_{DD} changes and goes higher than $V_{det2Rel}$ and the delay time expired $tV_{det2Rel}$, D_{OUT} pin will transition from "L" to "H".
- 8. At this moment, the discharge overvoltage protection state is released.

Discharge Over Current Detection and Release

The discharge over current detection is measured by the test circuit 2 and shown as below.


Test steps :

- 1. Set V_{DD} voltage to 3.60V and CS=VM to 0V.
- 2. Increase CS voltage gradually.
- 3. When the voltage on CS pin is increased and the voltage V_{CS} is higher than V_{SS} plus V_{det3} and the detection delay time (tV_{det3}) expired, D_{OUT} pin will transition from "H" to "L".
- 4. At this moment, enter the discharge overcurrent protection state
- 5. Then test discharge overcurrent release measurement
- 6. Decrease VM voltage gradually
- 7. For release condition : When the VM pin voltage is lower than 0.25V (typical) and the delay time expired tV_{det3}.
- 8. Discharge over current condition is released.
- 9. The relation between VM and Rload is shown as following :

Charge Over Current Detection and Release

The charge over current detection is measured by the test circuit 2 and shown as below. Test steps :

- 1. Set V_{DD} voltage to 3.60V and CS=VM to 0V.
- 2. Decrease CS voltage gradually
- 3. When the voltage on CS pin is decreased and the voltage V_{CS} is lower than V_{SS} plus Vdet4 and the detection delay time (tV_{det4}) expired, C_{OUT} pin will transition from "H" to "L".
- 4. At this moment, enter the charging overcurrent protection state
- 5. Then test charging overcurrent release measurement
- 6. Increase VM voltage gradually
- 7. For release condition : When the charger is removed, the system connects load, VM pin voltage is higher than 0.25V (typical) and the delay time expired tV_{det4}
- 8. Charge over current condition is released.

Load Short Circuit Detection and Release

The load short circuit detection is measured by the test circuit 2 and shown as below.

Test steps :

- 1. Set V_{DD} voltage to 3.60V and CS=VM to 0V
- 2. Increase CS voltage gradually
- 3. When the voltage on CS pin is increased and the voltage V_{CS} is higher than V_{SS} plus V_{short}, before the detection delay time (tV_{det3}) is expired, the voltage V_{CS} keeps on increase to be higher than V_{SS} plus V_{short} and the detection delay time (tV_{short}) expired, D_{OUT} pin will transition from "H" to "L".
- 4. At this moment, enter the short-circuit over-current protection state
- 5. Then test short-circuit over-current release measurement
- 6. Decrease VM voltage gradually.
- 7. When the VM pin voltage is lower than 0.25V (typical) and the delay time expired tV_{short}, D_{OUT} pin will transition from "L" to "H".
- 8. Load short circuit condition is released.
- 9. The relation between VM and Rload is shown as following :

V_{VM}=V_{DD} x R_{VMS}/(R_{VMS}+Rload)

Power Consumption in Normal Operation Mode

The normal mode power consumption is measured by the test circuit 2 and shown as below. Test steps :

- 1. Set V_{DD} =3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. C_{OUT} and D_{OUT} floating
- 4. Then measure the current I_{normal} going into V_{DD} pin.
- 5. Get the power consumption of normal mode Inormal

Power Consumption in Standby Mode

The standby mode power consumption is measured by the test circuit 2 and shown as below. Test steps :

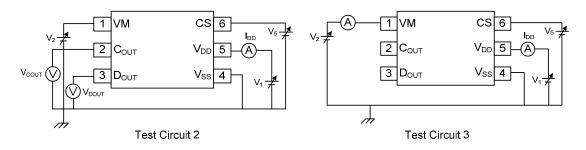
- 1. Set V_{DD}=V_{VM}=1.50V
- 2. Set V_{CS}=0V
- 3. C_{OUT} and D_{OUT} floating
- 4. Then measure the current I_{standby} going into V_{DD} pin.
- 5. Get The power consumption of standby mode $I_{standby.}$

Pull-Up Resistance between V_{DD} to VM pin (R_{VMD})

The pull-up resistance between V_{DD} and VM pin is measured by the test circuit 3 and shown as below. Test steps :

- 1. Set V_{DD}=1.80V
- 2. Set V_{CS}=V_{VM}=0V
- 3. C_{OUT} and D_{OUT} floating
- 4. Then measure the current I_{VM} .
- 5. The pull-up resistance between V_{DD} and VM pin is obtained by the relation :

 $R_{VMD}=V_{DD} / I_{VM}$



Pull-Down Resistance between VM to V_{DD} pin (R_{VMS})

The pull-down resistance between V_{DD} and VM pin is measured by the test circuit 3 and shown as below. Test steps :

- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=0V
- 3. Set VM=1.0V
- 4. C_{OUT} and D_{OUT} floating
- 5. Then measure the current I_{VM} .
- 6. The pull-down resistance between V_{DD} and VM pin is obtained by the relation :

R_{VMS}=V_{VM} / I_{VM}

C_{OUT} pin Pull-up Resistance (R_{COH})

The pull-up resistance on C_{OUT} pin is measured by the test circuit 4 and shown as below. Test steps :

- 1. Set V_{DD}=3.50V,
- 2. Set V_{CS}=V_{VM}=0V
- 3. Set V_{COUT}=3.0V
- 4. D_{OUT} floating, then measure the current I_{COUT}.
- 5. The C_{OUT} pin pull-up resistance is obtained by the relation :

R_{COH}=(V_{DD}-V_{COUT}) / I_{COUT}

COUT pin Pull-down Resistance (RCOL)

The pull-down resistance on C_{OUT} pin is measured by the test circuit 4 and shown as below. Test steps :

- 1. Set V_{DD}=4.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. Set V_{COUT}=3.0V
- 4. D_{OUT} floating
- 5. Then measure the current I_{COUT}.
- 6. The C_{OUT} pin pull-down resistance is obtained by the relation :

R_{COL}=V_{COUT} / I_{COUT}

DOUT pin Pull-up Resistance (RDOH)

The pull-up resistance on D_{OUT} pin is measured by the test circuit 4 and shown as below. Test steps :

- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. Set V_{DOUT}=3.0V
- 4. C_{OUT} floating
- 5. Then measure the current I_{DOUT}.
- 6. The D_{OUT} pin pull-up resistance is obtained by the relation :

RDOH=(VDD-VDOUT) / IDOUT

Dout pin Pull-Down Resistance (RDOL)

The pull-down resistance on D_{OUT} pin is measured by the test circuit 4 and shown as below.

Test steps :

- 1. Set V_{DD}=1.80V
- 2. Set V_{CS}=V_{VM}=0V
- 3. Set V_{DOUT}=0.50V
- 4. C_{OUT} floating
- 5. Then measure the current I_{DOUT}.
- 6. The D_{OUT} pin pull-down resistance is obtained by the relation :

R_{DOL}=V_{DOUT} / I_{DOUT}

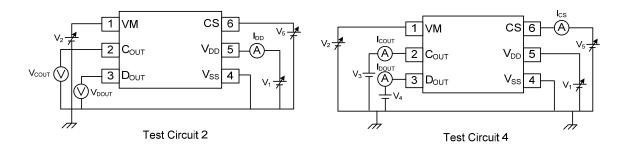
CS pin Input Resistance (R_{cs})

The input resistance on CS pin is measured by the test circuit 4 and shown as below. Test steps :

- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=0.05V
- 3. Set V_{VM}=0V
- 4. C_{OUT} and D_{OUT} floating
- 5. Then measure the current I_{CS} .
- 6. The CS pin input resistance is obtained by the relation :

Rcs=Vcs / Ics

0V Battery Charge Inhibition Voltage (V0INH)


The 0V battery charge inhibition voltage threshold is measured by the test circuit 2 and shown as below. Test steps :

- 1. Set V_{DD}=V_{CS}=0V
- 2. Set V_{VM}=-4.0V
- 3. D_{OUT} floating.
- 4. Increase V_{DD} voltage gradually, monitor V_{COUT}.
- 5. The V_{0INH} equals to the V_{DD} once V_{COUT}>=V_{VM}+0.10V.

0V Battery Charge Permission Voltage (V_{0CHA})

The 0V battery charge permission voltage threshold is measured by the test circuit 2 and shown as below. Test steps :

- 1. Set V_{DD}=V_{CS}=0V
- 2. Set V_{VM}=0V
- 3. D_{OUT} floating.
- 4. Decrease VM voltage gradually, monitor V_{COUT}.
- 5. The V_{0CHA} equals to the |VM| once V_{COUT}>=V_{VM}+0.10V

Overcharge Detection Delay Time (tV_{det1})

The overcharge detection delay time is measured by the test circuit 5 and shown as below.

Test steps :

- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. D_{OUT} floating
- 4. Then monitor C_{OUT} pin transition from "H" to "L".
- 5. Increase the V_{DD} voltage. When V_{DD} voltage exceeds the V_{det1} detection threshold, the internal delay time counter starts to count. When the internal delay time counts exceeds the tV_{det1} , C_{OUT} pin will transition from "H" to "L".
- 6. tV_{det1} equals to the time period between V_{DD} voltage exceeds Vdet1 and C_{OUT} transitions from "H" to "L".

Overdischarge Detection Delay Time (tV_{det2})

The overdischarge detection delay time is measured by the test circuit 5 and shown as below. Test steps :

- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. COUT floating
- 4. Then monitor D_{OUT} pin transition from "H" to "L".
- Decrease the V_{DD} voltage. When V_{DD} voltage goes lower than the V_{det2} detection threshold, the internal delay time counter starts to count. When the internal delay time counts exceeds the tV_{det2}, D_{OUT} pin will transition from "H" to "L".
- 6. tV_{det2} equals to the time period between V_{DD} voltage goes lower than V_{det2} and D_{OUT} transitions from "H" to "L".

Discharge Overcurrent Detection Delay Time (tV_{det3})

The discharge overcurrent detection delay time is measured by the test circuit 5 and shown as below. Test steps :

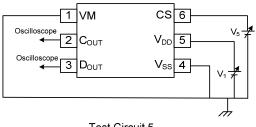
- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. C_{OUT} floating
- 4. Then monitor D_{OUT} pin transition from "H" to "L".
- Increase the V_{CS} voltage. When V_{CS} voltage exceeds the V_{det3} detection threshold, the internal delay time counter starts to count. When the internal delay time counts exceeds the tV_{det3}, D_{OUT} pin will transition from "H" to "L".
- 6. tV_{det3} equals to the time period between V_{CS} voltage exceeds V_{det3} and D_{OUT} transitions from "H" to "L".

Charge Overcurrent Detection Delay Time (tV_{det4})

The charge overcurrent detection delay time is measured by the test circuit 5 and shown as below.

Test steps :

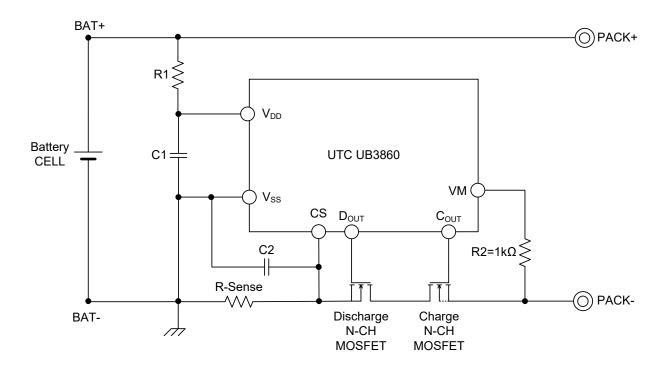
- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. D_{OUT} floating
- 4. Then monitor C_{OUT} pin transition from "H" to "L".
- Decrease the V_{CS} voltage. When V_{CS} voltage goes lower than the V_{det4} detection threshold, the internal delay time counter starts to count. When the internal delay time counts exceeds the tV_{det4}, C_{OUT} pin will transition from "H" to "L".
- 6. tV_{det4} equals to the time period between V_{CS} voltage goes lower than V_{det4} and C_{OUT} transitions from "H" to "L".



Load Short Circuit Detection Delay Time (tV_{short})

The load short circuit detection delay time is measured by the test circuit 5 and shown as below.

Test steps :


- 1. Set V_{DD}=3.50V
- 2. Set V_{CS}=V_{VM}=0V
- 3. C_{OUT} floating
- 4. Then monitor D_{OUT} pin transition from "H" to "L".
- Increase the V_{CS} voltage. When V_{CS} voltage exceeds the V_{short} detection threshold, the internal delay time counter starts to count. When the internal delay time counts exceeds the tV_{short}, D_{OUT} pin will transition from "H" to "L".
- 6. tV_{short} equals to the time period between V_{CS} voltage exceeds V_{short} and D_{OUT} transitions from "H" to "L"

Test Circuit 5

TYPICAL APPLICATION CIRCUIT

BOM					
Reference	MIN	TYP	MAX	UNIT	PURPOSE
R1		100	1k	Ω	
R2		1k	10k	Ω	For current limit of charger reverse connection
R-Sense					
C1	0.01	0.1	1	μF	For Input Voltage Stability
C2		0.1		μF	For Noise Suppression

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

