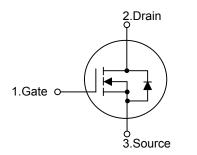


UNISONIC TECHNOLOGIES CO., LTD

F2N60A-LC1

Preliminary

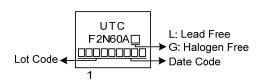
2.0A, 600V N-CHANNEL POWER MOSFET

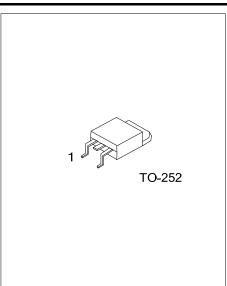

DESCRIPTION

The UTC **F2N60A-LC1** is a N-Channel enhancement mode silicon gate power MOSFET with Fast Body Diode, is designed high voltage, high speed power switching applications such, is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient AC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)} \le 6.5 \Omega$ @ V_{GS} =10V, I_D =1.0A
- * High Switching Speed
- * 100% Avalanche Tested


SYMBOL



ORDERING INFORMATION

Ordering Number		Deskere	Pin Assignment			De alvia a	
Lead Free	Halogen Free	Package	1 2 3		Packing		
F2N60AL-TN3-R	2N60AL-TN3-R F2N60AG-TN3-R		G	D	S	Tape Reel	
Note: Pin Assignment: G: Gate D: Drain S: Source							
F2N60AG-TN3-R (1)Packing Type (2)Package Type		(1) R: Tape Reel (2) TN3: TO-252					
	(3) G: Halogen Free and Lead Free, L: Lead Free						

MARKING

■ ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	600	V	
Gate-Source Voltage		V _{GSS} ±30		V	
Drain Current	Continuous	I _D	2	А	
	Pulsed (Note 2)	I _{DM}	4	А	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	60	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.2	V/ns	
Power Dissipation		PD	35	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

3. L = 30mH, I_{AS} = 2A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

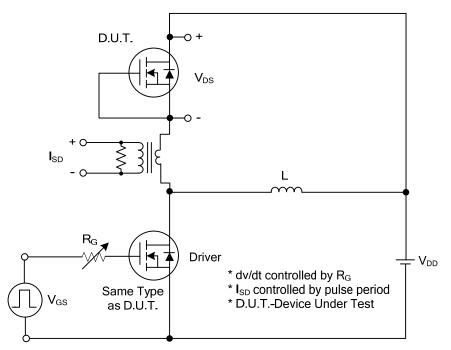
4. $I_{SD} \le 2.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

THERMAL DATA

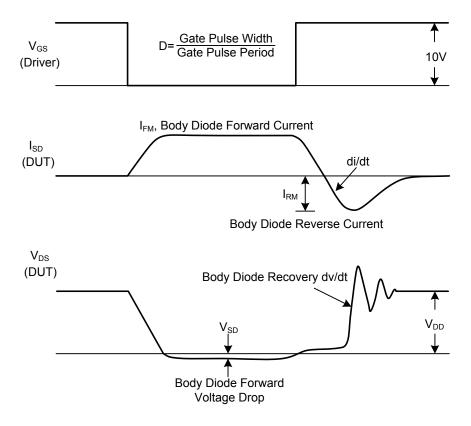
PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ _{JA}	110	°C/W	
Junction to Case	θ _{JC}	3.57 (Note)	°C/W	

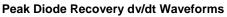
Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

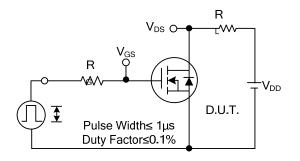

				1	-		
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μΑ, V _{GS} =0V	600			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =600V, V _{GS} =0V			10	μA
Cata Source Leakage Current	Forward	1	V _{GS} =+30V, V _{DS} =0V			+100	nA
Gate- Source Leakage Current	Reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , Ι _D =250μΑ			4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =1.0A			6.5	Ω
DYNAMIC PARAMETERS							
Input Capacitance	put Capacitance				230		рF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		28		рF
Reverse Transfer Capacitance		C _{RSS}			3.2		рF
SWITCHING PARAMETERS							
Total Gate Charge (Note 1)		Q_{G}			12		nC
Gate to Source Charge		Q_{GS}	V_{DS} =480V, V_{GS} =10V, I_{D} =2.0A		5.2		nC
Gate to Drain Charge		Q_{GD}	(Note 1, 2)		1.2		nC
Turn-ON Delay Time (Note 1)		t _{D(ON)}			4		ns
Rise Time		t _R	V _{DD} =100V, V _{GS} =10V,		15		ns
Turn-OFF Delay Time		t _{D(OFF)}	I _D =2.0A, R _G =25Ω (Note 1, 2)		18		ns
Fall-Time		t _F			28		ns
SOURCE- DRAIN DIODE RATINGS A	ND CHA	RACTERISTI	CS				
Maximum Body-Diode Continuous Current		ls				2	Α
Maximum Body-Diode Pulsed Current (Note 1)		I _{SM}				4	Α
Drain-Source Diode Forward Voltage (Note 1)		V_{SD}	I _S =2.0A, V _{GS} =0V			1.4	V
Body Diode Reverse Recovery Time		t _{rr}	I _S =2.0A, V _{GS} =0V,		80		ns
Body Diode Reverse Recovery Charge		Q _{rr}	dI _F /dt=100A/µs		100		nC
Notoo: 1. Dulas Test: Dulas width < 200		1 4 00/	•		•	•	

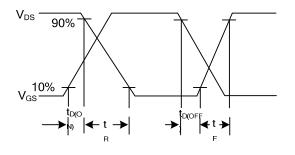
Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

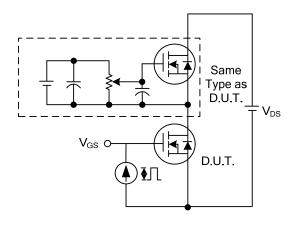

2. Essentially independent of operating temperature.

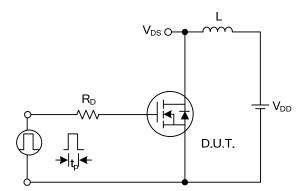


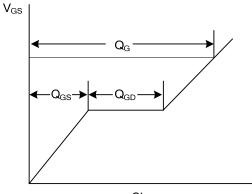
TEST CIRCUITS AND WAVEFORMS

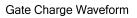

Peak Diode Recovery dv/dt Test Circuit

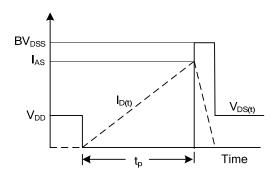



TEST CIRCUITS AND WAVEFORMS


Switching Test Circuit


Switching Waveforms





Unclamped Inductive Switching Test Circuit

Charge

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

