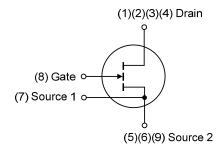
UGN65R360 POWER MOSFET

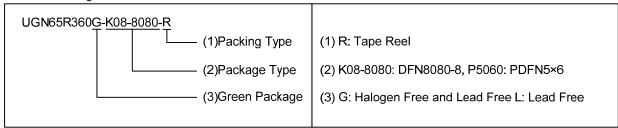
GALLIUM NITRIDE (GaN) ENHANCEMENT-MODE POWER TRANSISTOR

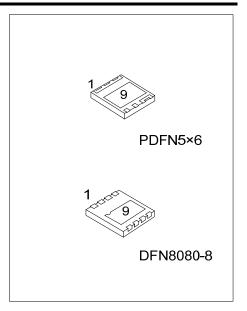

DESCRIPTION

The UTC **UGN65R360** is a gallium nitride (GaN) FETs with integrated gate drivers and GaN power devices offers the most efficient GaN solution with lifetime reliability and cost advantages. GaN transistors switch much faster than silicon MOSFETs, offering the potential to achieve lower-switching losses.

■ FEATURES

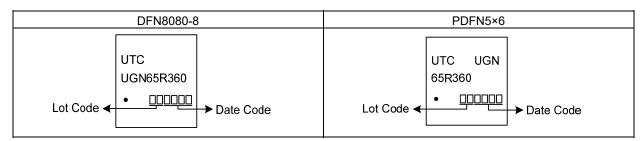
- * $R_{DS(ON)} \le 480 \text{ m}\Omega$ @ $V_{GS}=6.0V$, $I_{D}=2.0A$
- * High BV_{DSS} (>650V) Rating for Power Application
- * Low Input Capacitance; Low FOM
- * No reverse recovery charge
- * Reverse conduction capability


■ SYMBOL



ORDERING INFORMATION

Ordering Number		l Daalsana	Pin Assignment								Da alsina	
Lead Free	Halogen Free	Package	1	2	З	4	5	6	7	8	9	Packing
UGN65R360L-K08-8080-R	UGN65R360G-K08-8080-R	DFN8080-8	Д	D	Δ	Д	S2	S2	S1	G	S2	Tape Reel
UGN65R360L-P5060-R	UGN65R360G-P5060-R	PDFN5×6	D	D	D	D	S2	S2	S1	G	S2	Tape Reel
UGN65R360L-P5060-R	UGN65R360G-P5060-R	PDFN5×6	D	ט	D	D	S2	S2	S1	G	S2	Tape Re


Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 7

■ MARKING

UGN65R360 Power MOSFET

■ **ABSOLUTE MAXIMUM RATING** (Tc=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V_{DSS}	650	V
Gate-Source Voltage			V	-7 ∼ +7	V
Gate-Source Voltage Pulsed			V _{GSS}	-20 ~ +10	V
	Continuous	T _C =25°C	lσ	4.3	Α
Drain Current	Continuous	T _C =100°C		2.8	Α
	Pulsed (Note 2)		I _{DM}	8.6	Α
Danier Diagination	DFN8080-8		PD	60	W
Power Dissipation	PDFN5×6	PDFN5×6		40.3	W
Junction Temperature			T_J	+150	°C
Storage Temperature Range			T _{STG}	-20 ~ +150	°C

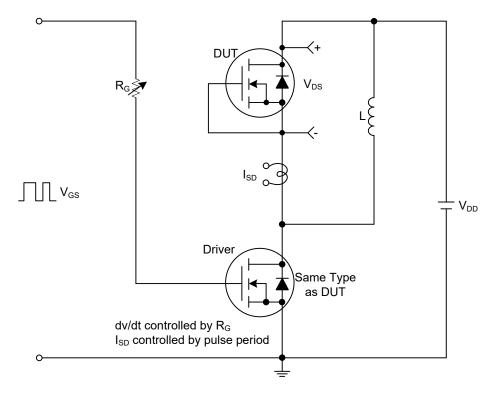
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. $V_{DS(Transient)}$ is intended for surge rating during non-repetitive events, $t_{Pulse} < 1 \mu s$.

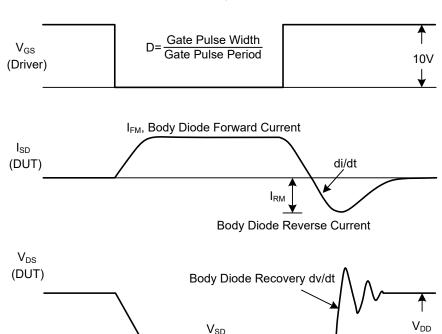
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	DFN8080-8	0	38	°C/W
	PDFN5×6	θја	62.3	°C/W
Junction to Case	DFN8080-8	0	2.08	°C/W
	PDFN5×6	θις	Alc	3.1

Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.


■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

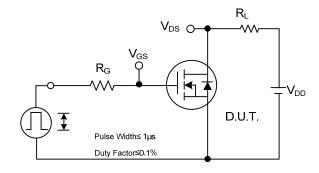
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D=10\mu A, V_{GS}=0V$	650			V				
Drain-Source Leakage Current	I _{DSS}	V _{DS} =650V, V _{GS} =0V			10	μΑ				
Gate-Source Leakage Current	I _{GSS}	V _{GS} =6V, V _{DS} =0V		200		μΑ				
ON CHARACTERISTICS										
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =2.1mA	1.4	2.1	3.2	V				
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =6.0V, I _D =2.0A		360	480	mΩ				
DYNAMIC PARAMETERS										
Input Capacitance	Ciss			59		pF				
Output Capacitance	Coss	V _{DS} =400V, V _{GS} =0V, f=1.0MHz		16		pF				
Reverse Transfer Capacitance	Crss			0.9		pF				
Gate Resistance	R _G	f=1.0MHz, Open Drain		4.9		Ω				
SWITCHING PARAMETERS	_		_		_					
Total Gate Charge (Note 1)	Charge (Note 1) Q _G			1.6		nC				
Gate to Source Charge	Q _G s	V _{DS} =400V, V _{GS} =0~6V, I _D =2.0A		0.3		nC				
Gate to Drain Charge	Q_{GD}			0.8		nC				
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Maximum Body-Diode Continuous Current	Is				4.3	Α				
Maximum Body-Diode Pulsed Current	lsм				8.6	Α				
Source Drain Voltage Body Diode Forward Voltage	V_{SD}	I _{SD} =2.0A, V _{GS} =0V		3.2		V				

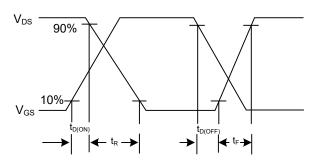

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

2. Essentially independent of operating ambient temperature.

■ TEST CIRCUITS AND WAVEFORMS

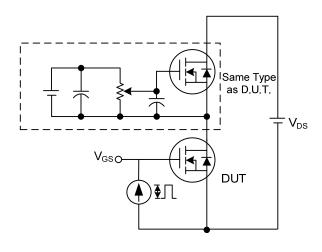
Peak Diode Recovery dv/dt Test Circuit

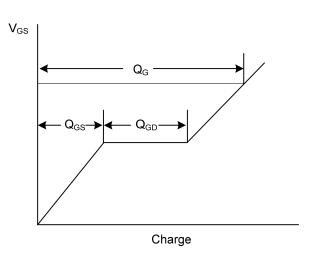



Peak Diode Recovery dv/dt Test Circuit and Waveforms

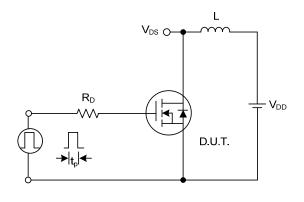
Peak Diode Recovery dv/dt Waveforms

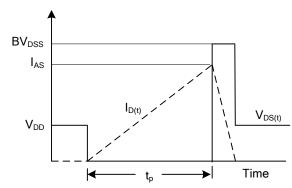
Body Diode Forward Voltage Drop UGN65R360 Power MOSFET


■ TEST CIRCUITS AND WAVEFORMS



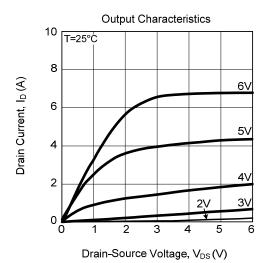
Switching Test Circuit

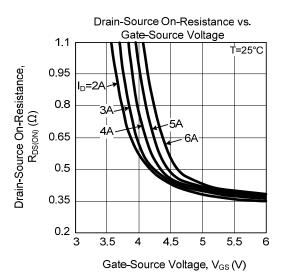

Switching Waveforms

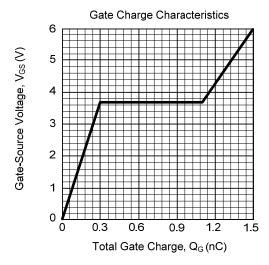


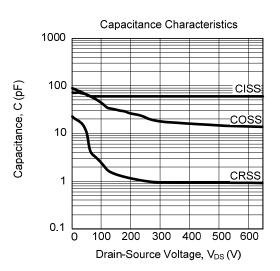
Gate Charge Test Circuit

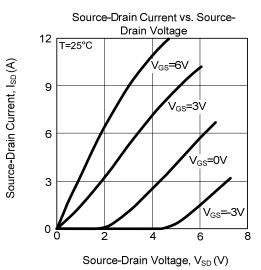
Gate Charge Waveform

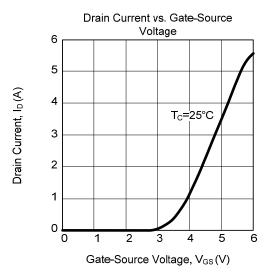


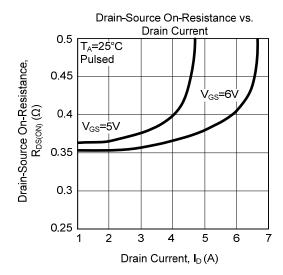



Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms


■ TYPICAL CHARACTERISTICS





■ TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.