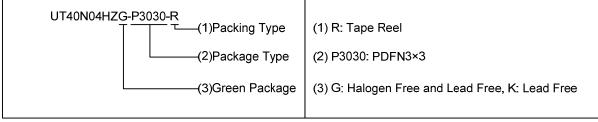

UT40N04HZ Preliminary Power MOSFET

40A, 40V N-CHANNEL ENHANCEMENT MODE TRENCH POWER MOSFET

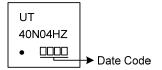
DESCRIPTION

The UTC **UT40N04HZ** is a N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

■ FEATURES


- * $R_{DS(ON)} \le 10 \text{ m}\Omega$ @ V_{GS} =10V, I_D =20A
- * Low drain-source on-resistance
- * Low leakage current?
- * Enhancement mode
- * With ESD Protected

■ SYMBOL


■ ORDERING INFORMATION

Ordering	Deelsene	Pin Assignment							Daakina			
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing	
UT40N04HZL-P3030-R	UT40N04HZG-P3030-R	PDFN3×3	ഗ	S	S	G	О	D	О	D	Tape Reel	
Note: Pin Assignment: S: Source G: Gate D: Drain												
UT40N04HZG-P30												

www.unisonic.com.tw 1 of 6

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	40	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Drain Current	Continuous	ID	40	A A	
	Pulsed (Note 2)	I _{DM}	80		
Single Pulsed Avalanche Energy (Note 3)		Eas	60	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	1.9	V/ns	
Power Dissipation		P _D	22	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

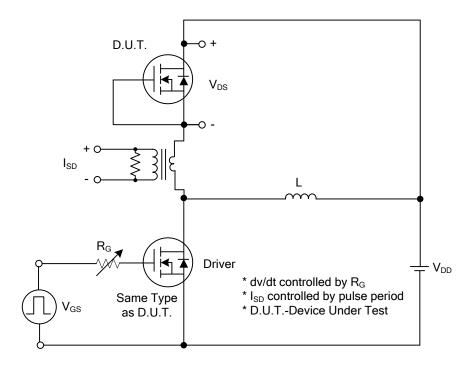
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 0.1mH, I_{AS} =34.6A, V_{DD} = 20V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. I_{SD} \leq 30A, di/dt \leq 200A/ μ s, V_{DD} \leq BV_{DSS}, T_J \leq T_{JMAX}, T_J = 25°C.

■ THERMAL DATA

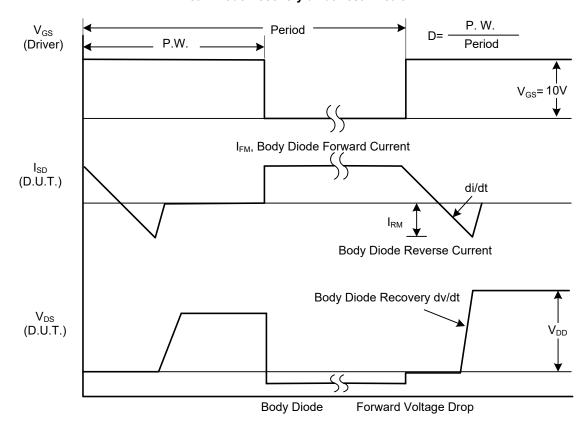
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θја	75	°C/W
Junction to Case	θις	5.68	°C/W

Note: Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.

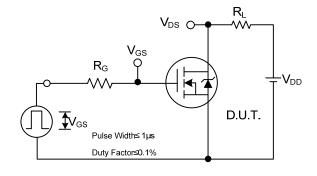
■ ELECTRICAL CHARACTERISTICS (TJ=25°C, unless otherwise specified)

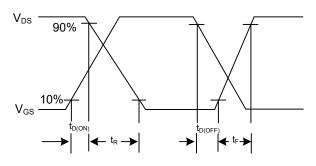

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	40			V			
Drain-Source Leakage Current		I _{DSS}	V _{DS} =40V, V _{GS} =0V			1	μΑ			
Gate-Source Leakage Current	Forward	lass	V _{GS} =+20V, V _{DS} =0V			+10	μΑ			
	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-10	μΑ			
ON CHARACTERISTICS										
Gate Threshold Voltage		$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =250μA	2.0		4.0	V			
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =20A			10	mΩ			
DYNAMIC PARAMETERS										
Input Capacitance	Input Capacitance				1412		pF			
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		184		pF			
Reverse Transfer Capacitance		Crss			152		pF			
SWITCHING PARAMETERS										
Total Gate Charge		Q _G			47		nC			
Gate to Source Charge		Q _G s	V _{DS} =32V, V _{GS} =10V, I _D =40A		5		nC			
Gate to Drain Charge		Q_{GD}			20		nC			
Turn-ON Delay Time		t _{D(ON)}			7		ns			
Rise Time		t_R	V _{DD} =20V, V _{GS} =10V, I _D =40A,		17		ns			
Turn-OFF Delay Time		t _{D(OFF)}	$R_G = 3\Omega$		130		ns			
Fall-Time		tϝ			71		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Maximum Body-Diode Continuous Current		ls				40	Α			
Maximum Body-Diode Pulsed Current		I _{SM}				80	Α			
Drain-Source Diode Forward Voltage		V_{SD}	I _{SD} =40A			1.4	V			
Body Diode Reverse Recovery Time		t _{rr}	120A d1/dt-100A/us		56		ns			
Body Diode Reverse Recovery Charge		Qrr	ls=30A, dl/dt=100A/µs		57		nC			

Notes: 1. Pulse Test: Pulse width $\leq 300\mu s$, Duty cycle $\leq 2\%$.

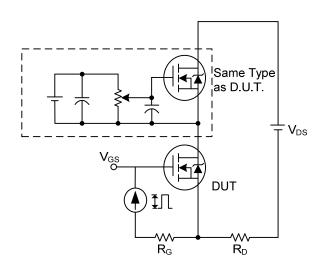

2. Essentially independent of operating temperature.

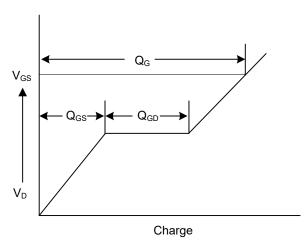
■ TEST CIRCUITS AND WAVEFORMS



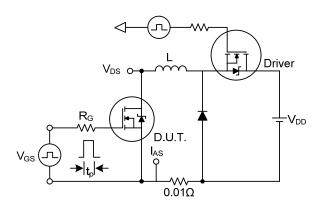

Peak Diode Recovery dv/dt Test Circuit

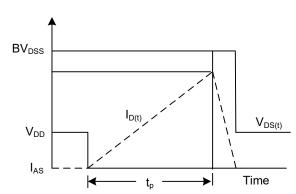
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

