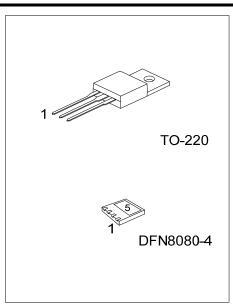
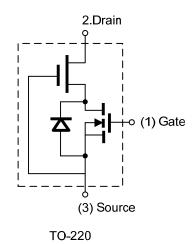


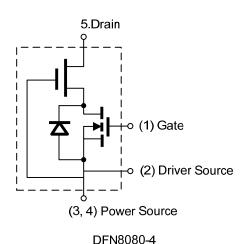
UNISONIC TECHNOLOGIES CO., LTD

UGN65R150 Advance POWER MOSFET


CASCODE GALLIUM NITRIDE (GaN) HEMT POWER TRANSISTOR

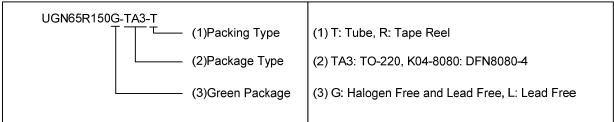
■ DESCRIPTION


The UTC **UGN65R150** is a cascaded 650V normally-on GaN HEMT in series with a low-voltage NMOSFET. The Provides high breakdown voltage, high current and high operating speed which is suitable for high power applications.

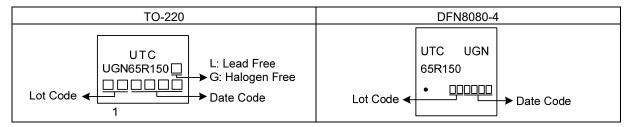

■ FEATURES

- * $R_{DS(ON)} \le 178 \text{ m}\Omega$ @ $V_{GS}=10V$, $I_{D}=5.0A$
- * 650V enhancement mode power transistor
- * High operating frequency

■ SYMBOL



ORDERING INFORMATION


Ordering Number		Dardana	Pin Assignment							Da alda a		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	9	Packing
UGN65R150L-TA3-R	UGN65R150G-TA3-R	TO-220	U	S	D	ı	-	i	-	-	ı	Tube
UGN65R150L-K04-8080-R	UGN65R150G-K04-8080-R	DFN8080-4	S	S	S	G	D	D	D	D	S	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 4

MARKING

■ ABSOLUTE MAXIMUM RATING (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	650	V	
Transient Drain to Source Voltage (Note 2)		V _{(TR)DSS}	>700	V	
Gate-Source Voltage		V _{GSS}	-20 ~ +20	V	
Drain Current	Continuous	T _C =25°C	l _D	14.9	Α
		T _C =100°C		10.1	Α
	pulse width:10µs (Note 3)		Ірм	55.7	Α
Power Dissipation TO-220 DFN8080-4		Б	125	W	
		DFN8080-4	P _D	74	W
Junction Temperature		TJ	-55 ~ +150	°C	
Storage Temperature Range		TstG	-55 ~ + 150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. In off-state, spike duty cycle D < 0.01, spike duration < 1μ s.
- 3. Defined by product design and characterization. Value is not tested to full current in production.

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	TO-220	0	62.5	°C/W
	DFN8080-4	θ _{JA}	35 (Note)	°C/W
Junction to Case	TO-220	0	0.97	°C/W
	DFN8080-4	θις	1.68 (Note)	°C/W

Note: Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	$I_D=100\mu A,\ V_{GS}=0V$				V			
Droin Source Leekage Current	1	V _{DS} =650V, V _{GS} =0V			28	μΑ			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =650V, V _{GS} =0V, T _J =150°C			100	μΑ			
Gate-Source Leakage Current	Igss	V _{GS} =20V, V _{DS} =0V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =1mA		1.8	3.0	V			
Static Drain-Source On-State	D	V _{GS} =10V, I _D =5.0A		145	178	mΩ			
Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =5.0A, T _J =125°C		294		mΩ			
DYNAMIC PARAMETERS									
Input Capacitance	Ciss			825		pF			
Output Capacitance	Coss	V _{DS} =400V, V _{GS} =0V, f=1.0MHz		21.6		pF			
Reverse Transfer Capacitance	Crss			3.85		pF			
SWITCHING PARAMETERS									
Total Gate Charge	Q_{G}	\/=400\/ \/=0 - 10\/ -=E 0		8.6		nC			
Gate to Source Charge	Q _G s	V _{DS} =400V, V _{GS} =0~10V, I _D =5.0A		2.7		nC			
Output charge	Qoss	V _{DS} =0~400V, V _{GS} =0V		32.8		nC			
Turn-On Delay Time	t _{D(ON)}	V _{DS} =400V, V _{GS} =0~10V,		10		ns			
Turn-Off Delay Time t _{D(OF}		I_{DS} =2.0A, R_{G} =25 Ω		20		ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Reverse Recovery Charge	Qrr	V _{DS} =400V, I _D =5.0A		48		μC			

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

