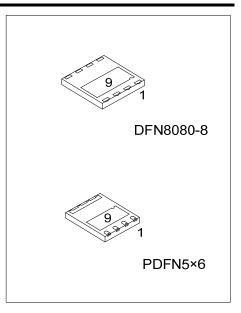
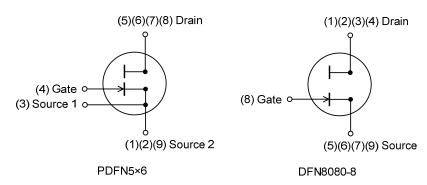
UGN65R350 Preliminary


GALLIUM NITRIDE (GaN) ENHANCEMENT-MODE POWER TRANSISTOR

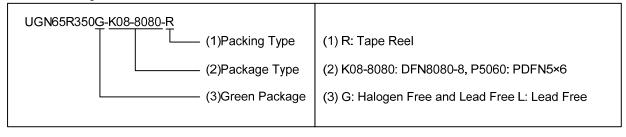
■ DESCRIPTION

The UTC **UGN65R350** is a gallium nitride (GaN) FETs power devices offers the most efficient GaN solution with lifetime reliability and cost advantages. GaN transistors switch much faster than silicon MOSFETs, offering the potential to achieve lower-switching losses.

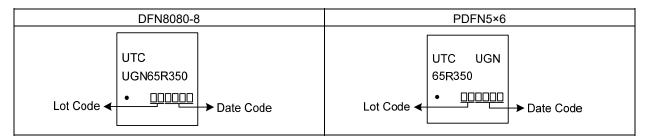

■ FEATURES

- * $R_{DS(ON)} \le 448.5 \text{ m}\Omega$ @ $V_{GS}=6.0V$, $I_{D}=5.0A$
- * High BV_{DSS} (>650V) Rating for Power Application
- * Low Input Capacitance; Low FOM
- * No reverse recovery charge
- * Reverse conduction capability
- * High operating frequency

POWER MOSFET


■ SYMBOL

ORDERING INFORMATION


Ordering Number		Deelrees	Pin Assignment							Daakina		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	9	Packing
UGN65R350L-K08-8080-R	UGN65R350G-K08-8080-R	DFN8080-8	D	D	D	D	S	S	ഗ	G	S	Tape Reel
UGN65R350L-P5060-R	UGN65R350G-P5060-R	PDFN5×6	S2	S2	S1	G	D	D	D	D	S2	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 4

■ MARKING

■ ABSOLUTE MAXIMUM RATING (Tc=25°C, unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V_{DSS}	650	V
Transient Drain to Source Voltage (Note 2)			$V_{(TR)DSS}$	800	V
Gate-Source Voltage			V_{GSS}	-6 ~ +7	V
Drain Current	Continuous	T _C =25°C	lσ	6.9	Α
	Continuous	T _C =100°C		4.4	Α
	Pulsed (t<10) (Note 3)	Pulsed (t<10µS) (Note 3)		13.2	А
Power Dissipation	DFN8080-8	DFN8080-8 PDFN5×6		52	W
	PDFN5×6			45	W
Junction Temperature			TJ	-40 ~ +150	°C
Storage Temperature Range		T _{STG}	-40 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. In off-state, spike duty cycle D < 0.01, spike duration < 1μ s.
- 3. Defined by product design and characterization. Value is not tested to full current in production.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	DFN8080-8/PDFN5×6	θЈΑ	68	°C/W
Junction to Case	DFN8080-8	0	2.4	°C/W
	PDFN5×6	θις	2.8	°C/W

Note: Device on 1 layer PCB.

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =100μA, V _{GS} =0V	650			V				
Drain-Source Leakage Current	I _{DSS}	V _{DS} =650V, V _{GS} =0V		0.3	3.0	μΑ				
Gate-Source Leakage Current	Igss	V _{GS} =6V, V _{DS} =0V		65		μΑ				
ON CHARACTERISTICS										
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =1mA	1.1	1.5	2.0	V				
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =6.0V, I _D =5.0A		345	448.5	mΩ				
DYNAMIC PARAMETERS										
Input Capacitance	Ciss			70		рF				
Output Capacitance	Coss	V _{DS} =400V, V _{GS} =0V		13		рF				
Reverse Transfer Capacitance	Crss			1		рF				
SWITCHING PARAMETERS										
Total Gate Charge (Note 1)	Q_{G}	\/=400\/\\\=6\/\\ -=5\0\		2		nC				
Gate to Source Charge	Q _G s	V _{DS} =400V, V _{GS} =6V, I _D =5.0A		0.18		nC				
Output charge	Q _{oss}	V _{DS} = 400V, V _{GS} = 0V		17.2		nC				
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS										
Maximum Body-Diode Continuous Current	Is				7.4	Α				
Maximum Body-Diode Pulsed Current	Ism				13.2	Α				
Reverse Recovery Charge	Qrr	I _D =5.0A , V _{DS} =400V		0		nC				

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

2. Essentially independent of operating ambient temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

