

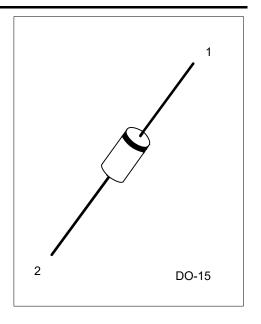
# UNISONIC TECHNOLOGIES CO., LTD

# SF21P THRU SF28P

# SCHOTTKY BRIDGE

# 2.0A SUPER FAST RECTIFIERS

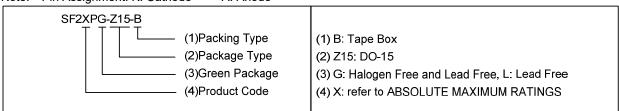
#### DESCRIPTION


The UTC SF21P THRU SF28P is a glass passivated super fast rectifier, it uses UTC's advanced technology to provide customers with high surge current and low forward voltage drop, etc

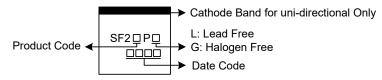
## **FEATURES**

- \* Super fast speed switching speed
- \* Low forward voltage drop
- \* Low leakage current
- \* Designed for Surface Mount Application
- \* High forward surge capability
- \* High reliability

# **SYMBOL**







# ORDERING INFORMATION

| Ordering     | Daakana      | Pin Ass | Do alsin a |   |          |  |
|--------------|--------------|---------|------------|---|----------|--|
| Lead Free    | Halogen Free | Package | 1          | 2 | Packing  |  |
| SF2XPL-Z15-B | SF2XPG-Z15-B | DO-15   | K          | Α | Tape Box |  |

Pin Assignment: K: Cathode Note: A: Anode



#### **MARKING**



# ■ ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub>=25°C, unless otherwise specified)

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitance load, derate current by 20%.

| PARAMETER                                                                                       |                               | CVMDOL           | RATINGS            |       |       |       |       |       |       |      |
|-------------------------------------------------------------------------------------------------|-------------------------------|------------------|--------------------|-------|-------|-------|-------|-------|-------|------|
|                                                                                                 |                               | SYMBOL           | SF21P              | SF22P | SF23P | SF24P | SF25P | SF26P | SF28P | UNIT |
| Maximum Recurrent Peak Reverse<br>Voltage                                                       |                               | $V_{RRM}$        | 50                 | 100   | 150   | 200   | 300   | 400   | 600   | V    |
| Maximum RMS Voltage                                                                             |                               | $V_{RMS}$        | 35                 | 70    | 105   | 140   | 210   | 280   | 420   | V    |
| Maximum DC Block                                                                                | Maximum DC Blocking Voltage   |                  | 50                 | 100   | 150   | 200   | 300   | 400   | 600   | V    |
| Maximum Average<br>Forward Rectified<br>Current                                                 | T <sub>A</sub> =55°C (Note 1) | lo               | 2.0                |       |       |       |       | Α     |       |      |
| Peak Forward surge current 8.3ms single half-sine-wave superimposed on rate load (JEDEC method) |                               | I <sub>FSM</sub> | 50                 |       |       |       |       |       |       | Α    |
| Operating Junction Temperature Range                                                            |                               | TJ               | -55 ~ <b>+</b> 150 |       |       |       |       |       |       | °C   |
| Storage Temperature Range                                                                       |                               | T <sub>STG</sub> | -55 ~ <b>+</b> 150 |       |       |       |       |       |       | °C   |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

#### ■ THERMAL DATA

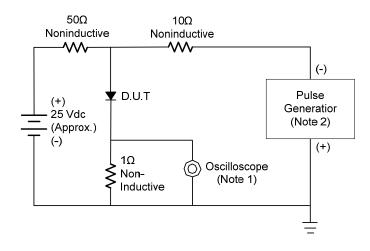
| PARAMETER           | SYMBOL        | RATINGS | UNIT |
|---------------------|---------------|---------|------|
| Junction to Ambient | $\theta_{JA}$ | 50      | °C/W |

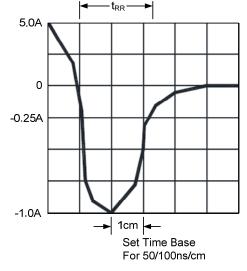
Note: Thermal resistance from junction to ambient 0.375"(9.5mm) lead length P.C.B. mounted.

## ■ ELECTRICAL CHARACTERISTICS (T<sub>A</sub>=25°C unless otherwise specified)

Ratings at 25°C ambient temperature unless otherwise specified.

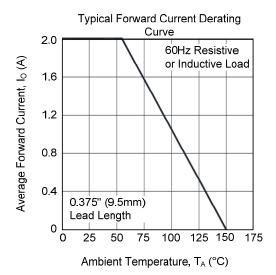
Single phase half-wave 60Hz, resistive or inductive load, for capacitive load current derate by 20%.


| DADAMETED                             | SYMBOL          | TEST                  | TEST RATINGS   |       |       |       |       |       |       | LINUT |
|---------------------------------------|-----------------|-----------------------|----------------|-------|-------|-------|-------|-------|-------|-------|
| PARAMETER                             |                 | CONDITIONS            | SF21P          | SF22P | SF23P | SF24P | SF25P | SF26P | SF28P | UNIT  |
| Maximum Forward Voltage               | $V_{F}$         | I <sub>F</sub> =2.0A  | 0.95 1.25 1.70 |       |       |       |       | 1.70  | V     |       |
| Maximum Reverse Current               |                 | T <sub>A</sub> =25°C  | 5.0            |       |       |       |       |       | μΑ    |       |
| at Rated DC Blocking<br>Voltage       | I <sub>R</sub>  | T <sub>A</sub> =100°C | 100            |       |       |       |       |       |       | μΑ    |
| Typical Junction Capacitance (Note 1) | t <sub>rr</sub> |                       | 35             |       |       |       |       | ns    |       |       |
| Junction Capacitance (Note 2)         | CJ              |                       | 30 20          |       |       |       |       | pF    |       |       |

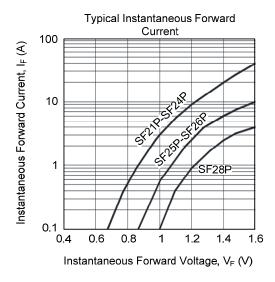

Notes: 1. Reverse recovery test conditions I<sub>F</sub>=0.5A, I<sub>R</sub>=1A, I<sub>RR</sub>=0.25A.

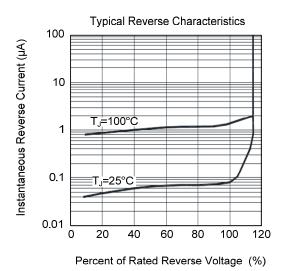
2. Measured at 1MHZ and applied reverse voltage of 4.0  $V_{\text{DC}}$ .

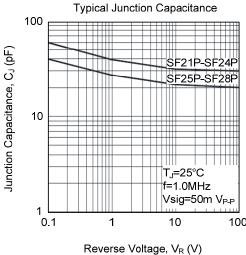
<sup>2.</sup> Mounted on glass epoxy pc board with 1.3mm<sup>2</sup> solder pad.


■ TEST CIRCUIT DIAGRAM AND FORWARD SURGE CURRENT





Notes: 1.Rise Time=7ns Max. Input Impedance=1 megohm. 22pF 2.Rise Time=10ns Max. Source Impedance= $50\Omega$ 


## TYPICAL CHARACTERISTICS











UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.