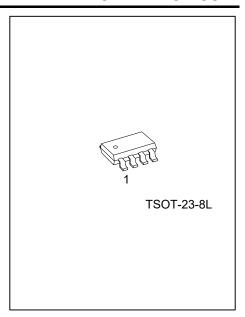
UNISONIC TECHNOLOGIES CO., LTD

LV358T

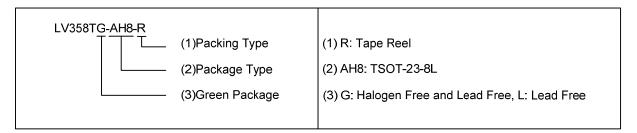
Preliminary


LINEAR INTEGRATED CIRCUIT

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL **OUTPUT OPERATIONAL AMPLIFIERS**

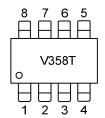
The UTC LV358T is a dual op amp with low supply current and low voltage (2.7-5.5V). It brings nice performance to low voltage and low power systems. With a 1.6MHz unity-gain frequency. The UTC LV358T has a guaranteed 0.9V/µs slew rate and low supply current. It provides heavy rail-to-rail (R-to-R) output swing loads and the input common-mode voltage range including ground. Besides, it is also capable for comfortably driving large capacitive loads.

The UTC LV358T has bipolar input and CMOS output for improved noise performance and higher output current drive. It's the most cost effective solution for the applications where low voltage operation, space saving and low price are required.

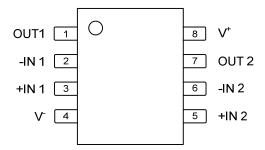


FEATURES

- * Supply Voltage: 2.7 ~ 5.5V
- * Supply current: 100µA / amplifier (Typ.)
- * Input Offset Voltage: 7mV (Max.)
- * Rail-to-Rail outputs
- * Slew Rate 0.9V/µs (Typ.)

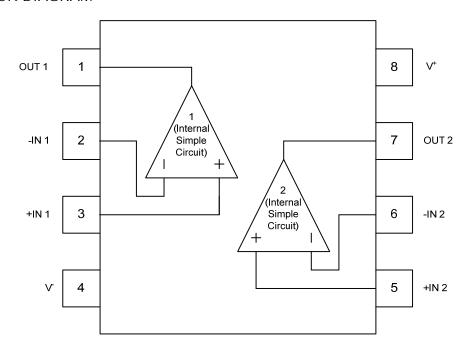

ORDERING INFORMATION

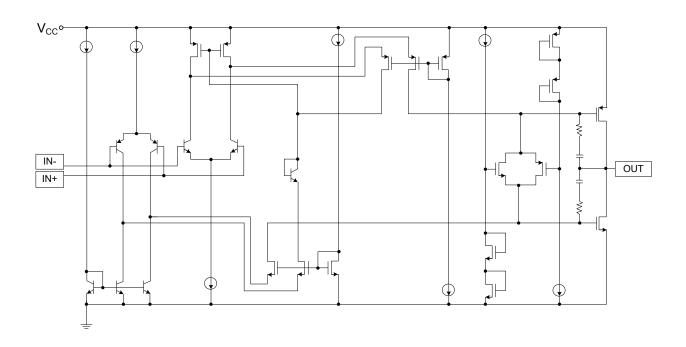
Ordering Number		Dealtana	Dooking	
Lead Free	Halogen Free	Package	Packing	
LV358TL-AH8-R	LV358TG-AH8-R	TSOT-23-8L	Tape Reel	



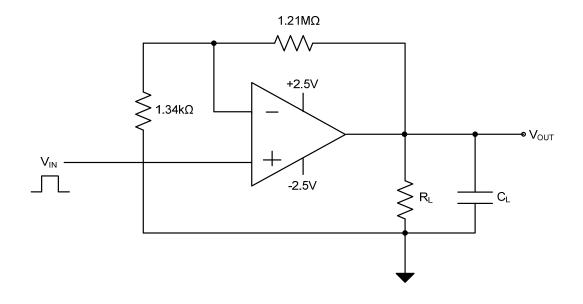
www.unisonic.com.tw 1 of 6

MARKING


■ PIN CONFIGURATION


■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT 1	Output of 1 AMP
2	-IN 1	Inverting input of 1 AMP
3	+IN 1	Non-inverting input of 1 AMP
4	V-	Negative power supply
5	+IN 2	Non-inverting input of 2 AMP
6	-IN 2	Inverting input of 2 AMP
7	OUT 2	Output of 2 AMP
8	V ⁺	Positive power supply


■ BLOCK DIAGRAM

■ INTERNAL SIMPLE CIRCUIT

■ TEST CIRCUIT FOR STABILITY VS CAPACITIVE LOAD

■ ABSOLUTE MAXIMUM RATINGS (Note1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ - V-	2.7 ~ 5.5	V
Supply Voltage (V ⁺ - V ⁻)	V+ - V-	5.5	V
Differential Input Voltage		±Supply Voltage	
Junction Temperature	TJ	+150	°C
Operation Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Shorting output to V+ will adversely affect reliability.
- 3. Shorting output to V- will adversely affect reliability.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance (Note 1)	θја	190	°C/W

Note: All numbers are typical, and apply for packages soldered directly note a PC board is still air.

■ 2.7V ELECTRICAL CHARACTERISTICS

(T_A=25°C, V⁺ = 2.7V, V⁻ = 0V, V_{CM} = 1.0V and R_L > 1M Ω , unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT		
DC CHARACTERISTICS								
Supply Current/Amplifier	IQ			80	170	μΑ		
Power Supply Rejection Ratio	PSRR	$2.7V \le V^{+} \le 5V, V_{OUT}=1V$	50	72		dB		
Input Offset Voltage	Vos			0.4	7	mV		
Input Bias Current	I_{B}			11		nA		
Input Offset Current	los			5		nA		
1 10 M 1 V II B	V _{СМ}	For CMRR ≥ 50dB	0	-0.2		V		
Input Common Mode Voltage Range				1.9	1.7	V		
Common Mode Rejection Ratio	CMRR	$0V \le V_{CM} \le 1.7V$	50	85		dB		
Output Swing	Vo	R _L =10kΩ to 1.35V	V+-100	V+-10		mV		
Output Swing				60	180	mV		
AC CHARACTERISTICS	-			_	_			
Gain Bandwidth Product	GBW	C _L =200pF		1.6		MHz		
Phase Margin	ΦМ			55		Deg		
Gain Margin	Gm			7		dB		
Input Referred Voltage Noise	en	F=1KHz		48		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$		
Input Referred Current Noise	İn	F=1KHz		0.18		<u>pA</u> √ Hz		

■ 5V ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V^+=5.0V, V^-=0V, V_{CM}=1.0V)$ and $R_L > 1M\Omega$, unless otherwise specified)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT	
DC CHARACTERISTICS				1			
Supply Current/Amplifier	Iq				100	220	μA
Power Supply Rejection Ratio	PSRR	2.7V ≤ V+ ≤ 5V V _{OUT} =1V, V _{CM} =1V		50	72		dB
Input Offset Voltage	Vos				0.4	7	mV
Input Bias Current	I_{B}				15		nA
Input Offset Current	los				5		nA
Input Common-Mode Voltage Range	V	F OMDD > 50-ID		0	-0.2		V
	Vсм	For CMRR ≥ 50dB			4.2	4	V
Common Mode Rejection Ratio	CMRR	$0V \le V_{CM} \le 4V$		50	85		dB
Large Signal Voltage Gain (Note 1)	Av	R _L =2KΩ		80	90		dB
	Vouт	R _L =2KΩ to2.5V	Vон	V+-300	V+-40		mV
Outrout Stains			V_{OL}		120	300	mV
Output Swing		R _L =10KΩ to 2.5V	Vон	V+-100	V+-10		mV
			V_{OL}		65	180	mV
Outrout Short Circuit Comment	Isc	Sourcing, V _{OUT} =0V		5	95		mA
Output Short Circuit Current		Sinking, V _{OUT} =5V		10	80		mA
AC CHARACTERISTICS							
Slew Rate	SR	(Note 2)			0.9		V/µs
Gain Bandwidth Product	GBW	C _L =200pF			1.6		MHz
Phase Margin	Фм				55		Deg
Gain Margin	Gm				7		dB
Input Referred Voltage Noise	en	f=1KHz			40		<u>nV</u> √ Hz
Input Referred Current Noise	İn	f=1KHz			0.22		<u>pA</u> √ Hz

Notes: 1. R_L is connected to V^- . The output voltage is $0.5V \le V_{OUT} \le 4.5V$.

^{2.} Connected as voltage follower with 3V step input. Number specified is these lower of the positive and negative slew rates.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.