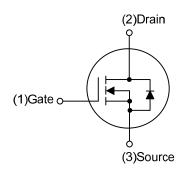
UTC UNISONIC TECHNOLOGIES CO., LTD

UT90N03M

Preliminary

POWER MOSFET

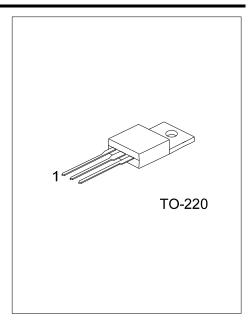
90A, 30V N-CHANNEL **ENHANCEMENT MODE** POWER MOSFET


DESCRIPTION

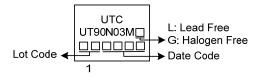
The UTC UT90N03M is a N-channel power MOSFET providing very low on-resistance. It has high efficiency and perfect cost-effectiveness. It can be generally applied in the commercial and industrial fields.

FEATURES

- * $R_{DS(ON)} \le 4.5 \text{ m}\Omega$ @ V_{GS} = 10V, I_D = 45A $R_{DS(ON)} \le 5.5 \text{ m}\Omega$ @ $V_{GS} = 4.5V$, $I_{D} = 30A$
- * Improved dv/dt capability
- * Simple drive requirement



ORDERING INFORMATION


Ordering Number		Deelsene	Pin Assignment			Deelsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT90N03ML-TA3-T UT90N03MG-TA3-T		TO-220	G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							

UT90N03MG-TA3-T (1) T: Tube - (1)Packing Type (2)Package Type (2) TA3: TO-220 (3) G: Halogen Free and Lead Free, L: Lead Free (3)Green Package

www.unisonic.com.tw 1 of 7

■ MARKING

■ ABSOLUTE MAXIMUM RATING (T_C=25°C unless otherwise specified)

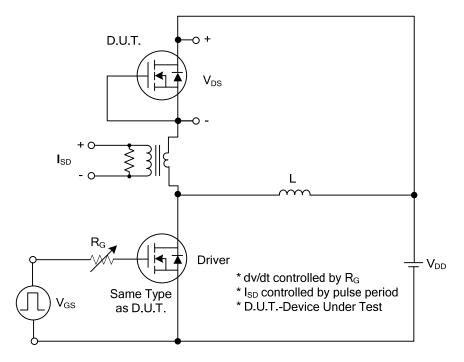
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	DC	I _D	90	Α	
	Pulsed (Note 2)	I _{DM}	180	Α	
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	49	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	1.44	V/ns	
Power Dissipation		P_D	220	W	
Junction Temperature		T_J	+150	°C	
Storage Temperature Range		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

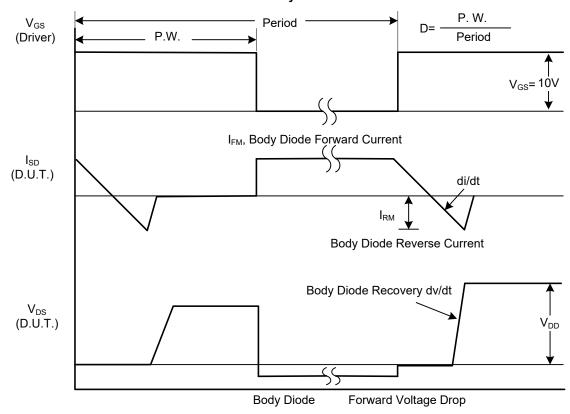
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 0.1mH, I_{AS} = 31.35A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C
- 4. $I_{SD} \leq 30 A$, $di/dt \leq 200 A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_{J} \leq 25 ^{\circ} C$

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θις	0.5	°C/W	

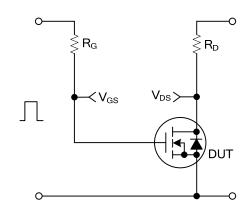

■ ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise specified)

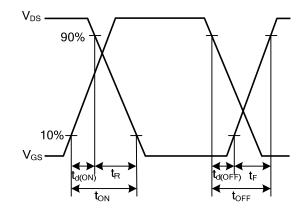
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	30			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1	μA
Forward	1	V _{GS} =+20V, V _{DS} =0V			+100	nA
Gate-Source Leakage Current Reverse	l _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D =250µA	1.0		3.0	V
Otatia Dunin Carres On Otata Daniatana	Б	V _{GS} =10V, I _D =45A			4.5	mΩ
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =30A			5.5	mΩ
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			3078		pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =15V, f=1.0MHz		580		pF
Reverse Transfer Capacitance	C _{RSS}			512		pF
SWITCHING PARAMETERS			- a			
Total Gate Charge	Q_G	-\(-24\\ \\ -10\\ \ -004		103		nC
Gate to Source Charge	Q _G s	V _{DS} =24V, V _{GS} =10V, I _D =90A (Note 1, 2)		15		nC
Gate to Drain Charge	Q_GD	(Note 1, 2)		27		nC
Turn-ON Delay Time	t _{D(ON)}			8		ns
Rise Time	t _R	V _{DD} =15V, V _{GS} =10V, I _D =90A,		18		ns
Turn-OFF Delay Time	t _{D(OFF)}	R _G =3.3Ω (Note 1, 2)		84		ns
Fall-Time	t⊧			58		ns
SOURCE-DRAIN DIODE RATINGS AND	CHARACTER	RISTICS				
Maximum Continuous Drain-Source Dioc	le Is				90	Α
Forward Current	15				90	
Maximum Pulsed Drain-Source Diode	Ism				180	Α
Forward Current	IOIVI				100	
Diode Forward Voltage	V _{SD}	I _F =90A, V _{GS} =0V			1.4	V
Reverse Recovery Time (Note 1)	t _{rr}	Is=30A, V _{GS} =0V,		295		nS
Reverse Recovery Charge	Qrr	dI _F /dt =100A/μs		976		nC


Notes: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%.

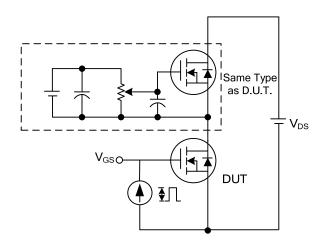
^{2.} Essentially independent of operating temperature.

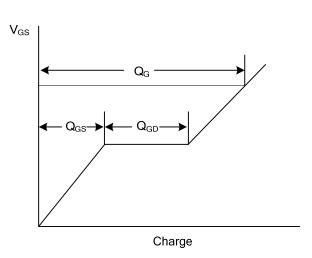
TEST CIRCUITS AND WAVEFORMS



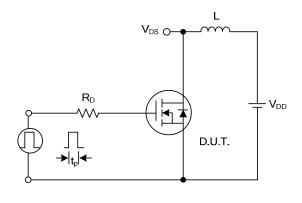

Peak Diode Recovery dv/dt Test Circuit

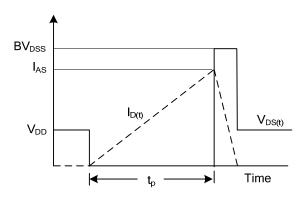
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS



itching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

