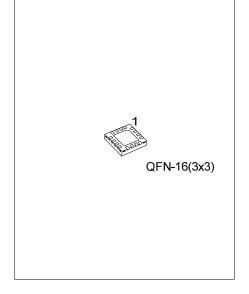
# UTC UNISONIC TECHNOLOGIES CO., LTD

**UAS6699 CMOS IC Preliminary** 

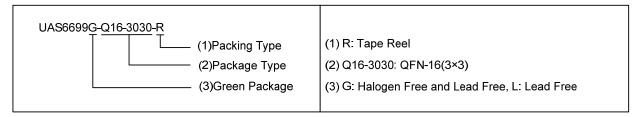

# DUAL ULTRA-LOW RON DPDT **ANALOG SWITCH**

#### DESCRIPTION

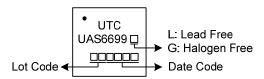
The UTC UAS6699 is a dual independent ultra-low Ron DPDT analog switch.

The UTC **UAS6699** can handle balanced microphone/speaker/ring-tone generator in a monophone mode. This device is designed for low operating voltage, high current switching of speaker output for cell phone applications. It can switch a balanced stereo output.

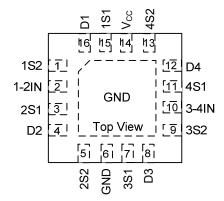
The UTC UAS6699 contains a break-before-make feature.




#### **FEATURES**


- \* Low Static Power
- \* Maximum Breakdown Voltage: 4.6V
- \* Single Supply Operation 1.65V to 3.6V Vcc

#### ORDERING INFORMATION


| Ordering            | Number                 | Package     | Dealine   |
|---------------------|------------------------|-------------|-----------|
| Lead Free           | Lead Free Halogen Free |             | Packing   |
| UAS6699L-Q16-3030-R | UAS6699G-Q16-3030-R    | QFN-16(3×3) | Tape Reel |



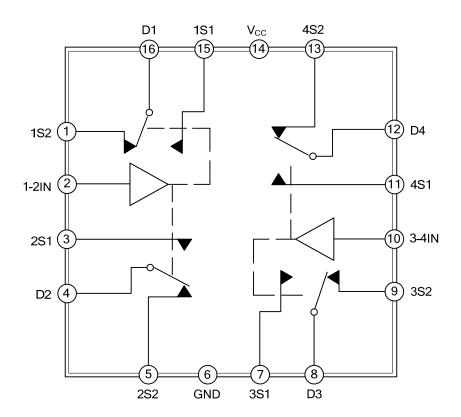
#### **MARKING**



#### ■ PIN CONFIGURATION



# ■ PIN DESCRIPTION


| PIN NO. | PIN NAME | DESCRIPTION             |
|---------|----------|-------------------------|
| 1       | 1S2      | Independent Channel     |
| 2       | 1-2IN    | Control                 |
| 3       | 2S1      | Independent Channel     |
| 4       | D2       | Common Channel          |
| 5       | 2S2      | Independent Channel     |
| 6       | GND      | Ground (V)              |
| 7       | 3S1      | Independent Channel     |
| 8       | D3       | Common Channel          |
| 9       | 3S2      | Independent Channel     |
| 10      | 3-4IN    | Control                 |
| 11      | 4S1      | Independent Channel     |
| 12      | D4       | Common Channel          |
| 13      | 4S2      | Independent Channel     |
| 14      | Vcc      | Positive Supply Voltage |
| 15      | 1S1      | Independent Channel     |
| 16      | D1       | Common Channel          |

# TRUTH TABLE

| IN | S1           | S2           |
|----|--------------|--------------|
| Н  | ON           | OFF (Note 1) |
| L  | OFF (Note 1) | ON           |

Note: High impedance.

# ■ BLOCK DIAGRAM



# ■ ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub> = 25°C, unless otherwise specified) (Note)

| PARAMETER                                                                       | SYMBOL                          | CONDITIONS                                             | RATINGS                      | UNIT         |
|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|------------------------------|--------------|
| Positive DC Supply Voltage                                                      | Vcc                             |                                                        | -0.5 ~ 4.6                   | V            |
| Analog Input Voltage (V <sub>NO</sub> , V <sub>NC</sub> , or V <sub>COM</sub> ) | V <sub>IS</sub>                 |                                                        | $-0.5 \le V_{IS} \le V_{CC}$ | V            |
| Digital Select Input Voltage                                                    | $V_{IN}$                        |                                                        | $-0.5 \le V_1 \le +4.6$      | V            |
| Continuous DC Current from COM to NC/NO                                         | I <sub>anl1</sub>               |                                                        | ±300                         | mA           |
| Peak Current from COM to NC/NO,<br>10 Duty Cycle<br>(Note 1)                    | I <sub>anl-pk</sub> 1           |                                                        | ±500                         | mA           |
| Continuous DC Current into COM/NO/NC with respect to V <sub>CC</sub> or GND     | $I_{clmp}$                      |                                                        | ±100                         | mA           |
| Input Rise or Fall Time, SELECT                                                 | t <sub>r</sub> , t <sub>f</sub> | $V_{CC} = 1.6V \sim 2.7V$<br>$V_{CC} = 3.0V \sim 3.6V$ | 0 ~ 20<br>0 ~ 10             | ns/V<br>ns/V |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

#### ■ RECOMMENDED OPERATING CONDITIONS

| PARAMETER                          | SYMBOL        | CONDITIONS                  | MIN  | TYP | MAX  | UNIT |
|------------------------------------|---------------|-----------------------------|------|-----|------|------|
| DC Supply Voltage                  | Vcc           |                             | 1.65 |     | 3.6  | V    |
| Digital Select Input Voltage       | $V_{IN}$      |                             | GND  |     | Vcc  | V    |
| Analog Input Voltage (NC, NO, COM) | Vıs           |                             | GND  |     | Vcc  | V    |
| Operating Temperature Range        | TA            |                             | -40  |     | +125 | Ĉ    |
| Innuit Dies en Fell Time CELECT    |               | Vcc = 1.6V~2.7V             | 0    |     | 20   | ns   |
| Input Rise or Fall Time, SELECT    | $t_r$ , $t_f$ | V <sub>CC</sub> = 3.0V~3.6V | 0    |     | 10   | ns/V |

# ■ DC CHARACTERISTICS – DIGITAL SECTION (Voltages Referenced to GND)

| PARAMETER                                 | SYMBOL           | TEST CONDITIONS                                                                   | MIN | TYP | MAX  | UNIT |
|-------------------------------------------|------------------|-----------------------------------------------------------------------------------|-----|-----|------|------|
| Minimum High Lavel Inquit Valtage         |                  | V <sub>CC</sub> = 1.8V                                                            | 1.2 |     |      | V    |
| Minimum High-Level Input Voltage,         | V <sub>IH</sub>  | V <sub>CC</sub> = 2.5V                                                            | 1.7 |     |      | V    |
| Select Inputs                             |                  | V <sub>CC</sub> = 3.6V                                                            | 2.2 |     |      | V    |
| Maximum Lavy Lavy Lavy Langut Valtage     | VIL              | V <sub>CC</sub> = 1.8V                                                            |     |     | 0.4  | V    |
| Maximum Low-Level Input Voltage,          |                  | V <sub>CC</sub> = 2.5V                                                            |     |     | 0.5  | V    |
| Select Inputs                             |                  | V <sub>CC</sub> = 3.6V                                                            |     |     | 0.7  | V    |
| Maximum Input Leakage Current, Select     | I <sub>IN</sub>  | $V_{IN} = V_{CC}$ or GND,                                                         |     |     | ±1.0 | μA   |
| Inputs                                    | -114             | V <sub>CC</sub> = 3.6V                                                            |     |     |      | I    |
| Power Off Leakage Current                 | l <sub>OFF</sub> | $V_{IN} = V_{CC}$ or GND, $V_{CC} = 0V$                                           |     |     | ±2.0 | μΑ   |
| Maximum Quiescent Supply Current (Note 1) | Icc              | Select and V <sub>IS</sub> = V <sub>CC</sub> or GND, V <sub>CC</sub> = 1.65V~3.6V |     |     | 2.0  | μA   |

<sup>2.</sup> Defined as 10% ON, 90% off duty cycle.

#### ■ DC ELECTRICAL CHARACTERISTICS – ANALOG SECTION

| PARAMETER                                   | SYMBOL               | TEST CONDITION                                                                                                                            | IS                     | MIN  | TYP | MAX  | UNIT |
|---------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|-----|------|------|
| NO/NO O D : 1                               |                      | V 4/ 55/ 5/ V - CND                                                                                                                       | V <sub>CC</sub> = 2.5V |      |     | 2.75 | Ω    |
| NC/NO On-Resistance                         | Ron                  | V <sub>IN</sub> ≤V <sub>IL</sub> or V <sub>IN</sub> ≥V <sub>IH</sub> V <sub>IS</sub> = GND<br>to V <sub>CC</sub> I <sub>INI</sub> ≤100 mA | V <sub>CC</sub> = 3.0V |      |     | 2.75 | Ω    |
| (Note 2)                                    |                      | TO VCC IINI S TOO IIIA                                                                                                                    | V <sub>CC</sub> = 3.6V |      |     | 2.7  | Ω    |
| NC/NC On Posistance                         |                      |                                                                                                                                           | V <sub>CC</sub> = 2.5V |      |     | 0.15 | Ω    |
| NC/NO On-Resistance<br>Flatness (Note 2, 4) | R <sub>FLAT</sub>    |                                                                                                                                           | V <sub>CC</sub> = 3.0V |      |     | 0.15 | Ω    |
|                                             |                      |                                                                                                                                           | V <sub>CC</sub> = 3.6V |      |     | 0.15 | Ω    |
| On Basistanas Matak Batusan                 |                      | V <sub>IS</sub> = 1.3V; I <sub>COM</sub> =-100mA                                                                                          | V <sub>CC</sub> = 2.5V |      |     | 0.06 | Ω    |
| On-Resistance Match Between                 | $\triangle R_{ON}$   | V <sub>IS</sub> = 1.5V; I <sub>COM</sub> =-100mA                                                                                          | V <sub>CC</sub> = 3.0V |      |     | 0.05 | Ω    |
| Channels (Note 2 , 3)                       |                      | V <sub>IS</sub> = 1.8V; I <sub>COM</sub> =-100mA                                                                                          | V <sub>CC</sub> = 3.6V |      |     | 0.05 | Ω    |
| NC or NO Off Leakage Current (Note 2)       | I <sub>NC(OFF)</sub> | $V_{IN} = V_{IL}$ or $V_{IH}$ $V_{NO}$ or $V_{NC} = 0$<br>$V_{COM} = 3.3V$ , $V_{CC} = 3.6V$                                              | .3V                    | -10  |     | 10   | nA   |
| COM ON Leakage Current<br>(Note 2)          | , ,                  | $V_{IN} = V_{IL}$ or $V_{IH}$ $V_{NO}$ 0.3V or 3.3 floating or $V_{NC}$ 0.3V or 3.3V will floating $V_{COM} = 0.3V$ or 3.3V, $V_{NC}$     | th V <sub>NO</sub>     | -100 |     | 100  | nA   |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
- 3.  $\triangle R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$  between nS1 or nS2.
- 4. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

#### ■ AC ELECTRICAL CHARACTERISTICS (Input t<sub>r</sub> = t<sub>f</sub> = 3.0 ns)

| PARAMETER                                    | SYMBOL           | TEST CONDITIONS                                                                                  | MIN | TYP | MAX | UNIT |
|----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Turn-On Time                                 | t <sub>ON</sub>  | $R_L = 50\Omega$ , $C_L = 35pF$ (Figures 3 and 4), $V_{CC} = 2.3V \sim 3.6V$ , $V_{IS} = 1.5V$   |     |     | 70  | ns   |
| Turn-Off Time                                | toff             | $R_L = 50\Omega$ , $C_L = 35pF$ (Figures 3 and 4)<br>$V_{CC} = 2.3V \sim 3.6V$ , $V_{IS} = 1.5V$ |     |     | 50  | ns   |
| Minimum Break-Before-Make Time               | t <sub>BBM</sub> | $V_{IS} = 3.0V$ , $R_L = 50\Omega$ , $C_L = 35pF$ , $V_{CC} = 3.0V$ (Figure 2)                   | 30  |     |     | ns   |
| Control Pin Input Capacitance                | CIN              | V <sub>CC</sub> = 3.6V                                                                           |     | 2.5 |     | pF   |
| SN Port Capacitance                          | Csn              | V <sub>CC</sub> = 3.6V                                                                           |     | 55  |     | pF   |
| D Port Capacitance When<br>Switch is Enabled | C <sub>D</sub>   | V <sub>CC</sub> = 3.6V                                                                           |     | 175 |     | pF   |

#### ■ ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

| PARAMETER                                                             | SYMBOL | TEST CONDITIONS                                                                                                                                                                  | MIN | TYP   | MAX | UNIT |
|-----------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|
| Maximum On-Channel -3dB<br>Bandwidth or Minimum<br>Frequency Response | BW     | V <sub>IN</sub> centered between V <sub>CC</sub> and GND (Figure 5), V <sub>CC</sub> = 1.65V~3.6V                                                                                |     | 20    |     | MHz  |
| Maximum Feed-through On Loss                                          | Vonl   | V <sub>IN</sub> = 0dBm @ 100kHz to 50MHz V <sub>IN</sub> centered between V <sub>CC</sub> and GND (Figure 5) V <sub>CC</sub> = 1.65V~3.6V                                        |     | -0.06 |     | dB   |
| Off-Channel Isolation                                                 | Viso   | f = 100kHz; V <sub>IS</sub> = 1V RMS; C <sub>L</sub> = 5pF V <sub>IN</sub> centered between V <sub>CC</sub> and GND(Figure 5) V <sub>CC</sub> = 1.65V~3.6V                       |     | -62   |     | dB   |
| Charge Injection Select Input to Common I/O                           | Q      | $V_{IN}$ = $V_{CC}$ to GND, $R_{IS}$ = $0\Omega$ , $C_L$ = $1nF$<br>Q= $C_L$ x $\triangle V_{OUT}$ (Figure 6), $V_{CC}$ = 1.65V~3.6V                                             |     | 50    |     | рС   |
| Total Harmonic Distortion THD + Noise                                 | THD    | F <sub>IS</sub> = 20Hz to 20kHz, R <sub>L</sub> = R <sub>gen</sub> = $600\Omega$ ,<br>C <sub>L</sub> = $50$ pF V <sub>IS</sub> = $2$ V <sub>PP</sub> , V <sub>CC</sub> = $3.6$ V |     | 0.01  |     | %    |
| Channel-to-Channel Crosstalk                                          | VCT    | f = 100 kHz; $V_{IS}$ = 1V RMS, $C_{L}$ = 5 pF, $R_{L}$ = 50Ω, $V_{IN}$ centered between $V_{CC}$ and GND (Figure 5), $V_{CC}$ = 1.65V~3.6V                                      |     | -62   |     | dB   |

# ■ INPUT EQUIVALENT CIRCUIT

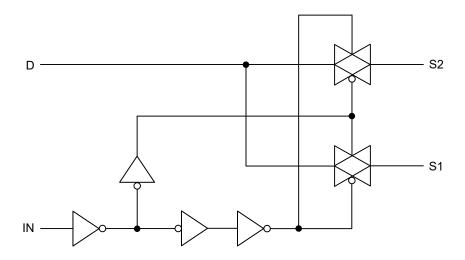
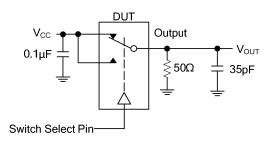




Figure 1. Input Equivalent Circuit

#### ■ PARAMETER MEASUREMENT INFORMATION



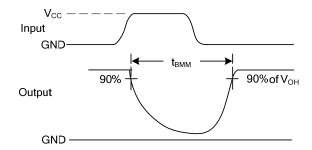
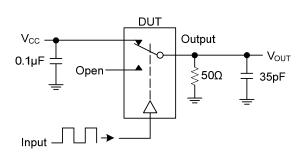




Figure 2.  $t_{\text{BBM}}$  (Time Break-Before-Make)



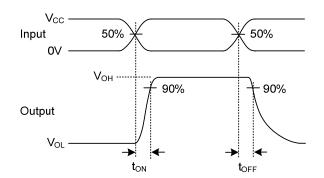
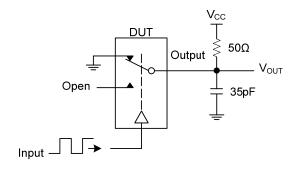




Figure 3. t<sub>ON</sub>/t<sub>OFF</sub>



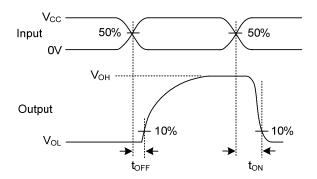
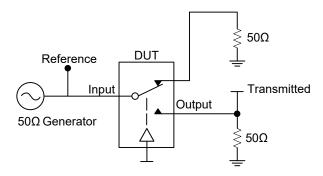




Figure 4. t<sub>ON</sub>/t<sub>OFF</sub>

■ PARAMETER MEASUREMENT INFORMATION (Cont.)



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch.  $V_{\rm ISO}$ , Bandwidth and  $V_{\rm ONL}$  are independent of the input signal direction.

$$V_{ISO}$$
 = Off Channel Isolation = 20 Log  $\left(\frac{V_{OUT}}{V_{IN}}\right)$  for  $V_{IN}$  at 100 kHz  $V_{ONL}$  = On Channel Loss = 20 Log  $\left(\frac{V_{OUT}}{V_{IN}}\right)$  for  $V_{IN}$  at 100 kHz to 50 MHz

Bandwidth (BW) = the frequency 3 dB below  $V_{ONL}$  $V_{CT}$  = Use  $V_{ISO}$  setup and test to all other switch analog input/outputs terminated with  $50\Omega$ 

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V<sub>ONL</sub>



Figure 6. Charge Injection: (Q)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.