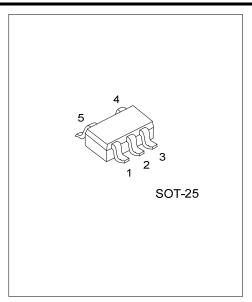


# UNISONIC TECHNOLOGIES CO., LTD

UD052015 **CMOS IC** 


# 2A, 1.5MHZ SYNCHRONOUS STEP DOWN CONVERTER

#### DESCRIPTION

The UTC UD052015 is a 2A synchronous DC-DC with current mode, PWM step-down converter. The device integrates a main switch and a synchronous rectifier for high efficiency.

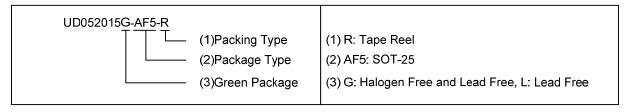
The 2.5V to 5.5V input voltage range makes the UTC UD052015 ideal for powering portable equipment. Switching frequency is internally set at 1.5MHz, allowing the use of small surface mount inductors and capacitors.

The internal synchronous switch increases efficiency while eliminates the need for an external Schottky diode. The UTC UD052015 also includes input under- voltage lockout, output under-voltage protection, and over-temperature protection to provide safe and smooth operation in all working conditions.

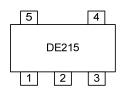


#### **FEATURES**

- \* 2.5V to 5.5V Input Voltage Range
- \* 2A Available Load Current
- \* 1.5MHz Switching Frequency in CCM
- \* Low R<sub>DSON</sub> for Internal Switches:

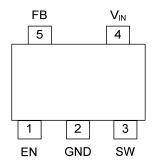

High-side: 125mΩ Low-side: 95mΩ \* Soft Start Time: 1ms

\* 65µA Typical Quiescent Current


- \* Cycle-by-cycle Peak Current Limitation
- \* Input Over-Voltage Protection
- \* Input Under-Voltage Lockout
- \* Output Under-Voltage Lockout
- \* Short Circuit with Hiccup Mode
- \* Fast Transient Responses
- \* Optimized for Low-ESR Ceramic Output Capacitors
- \* Over-temperature Protection

# ORDERING INFORMATION

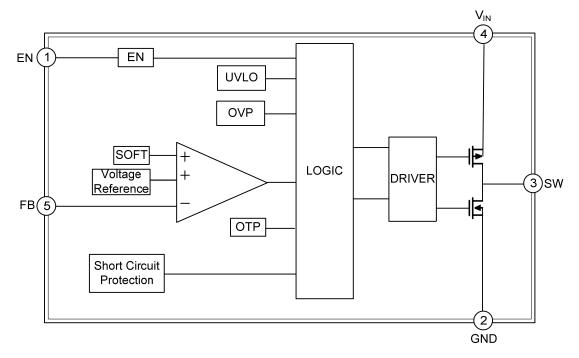
| Ordering        | Number          | Dealtons | Dealing   |  |
|-----------------|-----------------|----------|-----------|--|
| Lead Free       | Halogen Free    | Package  | Packing   |  |
| UD052015L-AF5-R | UD052015G-AF5-R | SOT-25   | Tape Reel |  |




#### **MARKING**



www.unisonic.com.tw 1 of 13


# ■ PIN CONFIGURATION



# ■ PIN DESCRIPTION

| PIN NO. | PIN NAME | I/O | DESCRIPTION                                                                                                                     |
|---------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 1       | EN       | - 1 | Enable control pin. Pull high to turn on.                                                                                       |
| 2       | GND      | Р   | Ground pin.                                                                                                                     |
| 3       | SW       | ( ) | Switch node connection to inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches. |
| 4       | Vin      | Р   | Supply voltage pin. Decouple this pin to the GND pin with at least a $22\mu F$ ceramic capacitor.                               |
| 5       | FB       | I   | Output Voltage Feedback Pin.                                                                                                    |

#### ■ BLOCK DIAGRAM



# ■ ABSOLUTE MAXIMUM RATING (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                      | SYMBOL           | RATINGS    | UNIT |
|--------------------------------|------------------|------------|------|
| V <sub>IN</sub> , EN Voltages  |                  | -0.3 ~ 6.5 | V    |
| SW Voltage                     | V <sub>SW</sub>  | -0.3 ~ 6.5 | V    |
| SW Voltage (Less than 40ns)    | V <sub>SW</sub>  | -3 ~ 7     | V    |
| FB Voltage                     | $V_{FB}$         | -0.3 ~ 6.5 | V    |
| Operating Junction Temperature | TJ               | -40 ~ +150 | °C   |
| Storage Temperature            | T <sub>STG</sub> | -65 ~ +150 | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

# ■ RECOMMENDED OPERATING CONDITIONS

| PARAMETER                            | SYMBOL          | RATINGS    | UNIT |
|--------------------------------------|-----------------|------------|------|
| Supply Voltage                       | V <sub>IN</sub> | 2.5 ~ 5.5  | V    |
| Ambient Temperature Range            | T <sub>A</sub>  | -40 ~ +85  | °C   |
| Operation Junction Temperature Range | TJ              | -40 ~ +125 | °C   |

#### ■ THERMAL DATA

| PARAMETER           | SYMBOL        | RATINGS | UNIT |
|---------------------|---------------|---------|------|
| Junction to Ambient | $\theta_{JA}$ | 250     | °C/W |
| Junction to Case    | $\theta_{JC}$ | 130     | °C/W |

# ■ ELECTRICAL CHARACTERISTICS (V<sub>IN</sub>=5V, V<sub>OUT</sub>=2.5V, T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                                | SYMBOL              | TEST CONDITIONS                            | MIN   | TYP  | MAX   | UNIT              |
|------------------------------------------|---------------------|--------------------------------------------|-------|------|-------|-------------------|
| GENERAL SECTION                          |                     |                                            |       |      |       |                   |
| Input Voltage Range                      | $V_{IN}$            |                                            | 2.5   |      | 2.5   | V                 |
| Quiescent Current                        | ΙQ                  | V <sub>FB</sub> =0.65V, SW Open            |       | 65   |       | μA                |
| Shutdown Supply Current                  | I <sub>SD</sub>     | V <sub>EN</sub> =0V, V <sub>IN</sub> =5V   |       | 0.1  | 10    | μA                |
| THRESHOLD VOLTAGE                        |                     |                                            |       |      |       |                   |
| EN High-Level Input Voltage              | $V_{ENH}$           |                                            | 1.15  | 1.25 | 1.35  | V                 |
| EN Low-Level Input Voltage               | $V_{ENL}$           |                                            |       | 1    |       | V                 |
| Wake up V <sub>IN</sub> Voltage          | $V_{\text{UVLOH}}$  |                                            |       | 2.4  |       | V                 |
| Input UVLO Hysteresis                    | $V_{UVLO\_HY}$      |                                            |       | 150  |       | mV                |
| SOFT START                               |                     |                                            |       |      | ā     |                   |
| Turn-On Delay                            | T <sub>ON_MIN</sub> |                                            |       | 0.5  |       | ms                |
| Soft-Start Time                          | $T_{SS}$            |                                            |       | 1    |       | ms                |
| ON-TIME TIMER CONTROL                    |                     |                                            | _     |      |       |                   |
| Minimum On-Time                          | $T_{ON\_MIN}$       |                                            |       | 50   |       | ns                |
| MODULATOR CONTROL SECTION                |                     |                                            | _     |      |       |                   |
| Regulated Feedback Voltage               | $V_{FB}$            |                                            | 0.588 | 0.6  | 0.612 | V                 |
| Switching Frequency                      | F <sub>SW</sub>     | CCM Mode                                   | 1.0   | 1.5  | 2.0   | MHz               |
| INTERNAL MOSFET                          |                     |                                            |       |      |       |                   |
| High-Side Switch Resistance              | R <sub>DSON_H</sub> | V <sub>GS</sub> =5V, V <sub>DS</sub> =0.1V |       | 125  |       | mΩ                |
| Low-Side Switch Resistance               | R <sub>DSON_L</sub> | V <sub>GS</sub> =5V, V <sub>DS</sub> =0.1V |       | 95   |       | mΩ                |
| CURRENT LIMIT                            |                     |                                            |       |      |       |                   |
| High-Side Switch Current Limit           | Ішм_н               |                                            |       | 3.5  |       | Α                 |
| PROTECTION SECTION                       |                     |                                            |       |      |       |                   |
| Output Under-Voltage                     | V <sub>UVP</sub>    | Hiccup Detect                              |       | 66   |       | $V_{\text{FB}}\%$ |
| Input Over-Voltage Protection            | VINOVP              |                                            |       | 6    |       | V                 |
| Input Over-Voltage Protection Hysteresis | VINOVP_HY           |                                            |       | 0.25 |       | V                 |
| Hiccup ON-Time                           | THICCUP_ON          |                                            |       | 3    |       | ms                |
| Hiccup OFF-Time                          | THICCUP_OFF         |                                            |       | 15   |       | ms                |
| Over-Temperature Protection Threshold    | OTP                 |                                            |       | 160  |       | °C                |
| Over-Temperature Protection Hysteresis   | $OTP_Hy$            |                                            |       | 20   |       | °C                |

#### ■ FUNCTION DESCRIPTION

The **UD052015** is a 2A synchronous step- down DC-DC converter with an input voltage range of 2.5V to 5.5V and output voltage as low as 0.6V. The **UD052015** adopts the Peak current architecture to achieve fast transient responses for high voltage step down applications. This device operates at 1.5MHz operating frequency to ensure a compact, high efficiency design with excellent AC and DC performance.

#### Input Under-Voltage Lockout

Input under-voltage lockout (UVLO) monitors the input voltage. When the input voltage is higher than the UVLO threshold voltage (typ.2.4V), the device will turn on. Once the input voltage drops below the threshold with hysteresis (typ.150mV), the device will shut down.

#### Input Over-Voltage Protection

Input over-voltage protection (OVP) monitors the input voltage. When the input voltage is above the OVP threshold voltage (typ.6V), the device shuts down. Once the input voltage drops below the threshold with hysteresis (typ.0.25V), the **UD052015** will return to normal operation automatically.

#### Soft Start

The **UD052015** provides an internal soft-start from overshooting during startup. This scheme ensures that the converters ramp up smoothly. The output voltage starts to rise in 0.5ms from EN rising, and the soft-start ramp-up time ( $V_{FB}$  from 0V to 0.6V) is 1ms, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage  $V_{FB}$ .

#### **Maximum Duty Cycle Operation**

The **UD052015** is designed to operate in dropout at the high duty cycle approaching 100%. The **UD052015** implements skip off- time function to achieve high duty approaching 100%. Therefore, the maximum output voltage is near the minimum input supply voltage of the application for input voltage momentarily falls down to the normal output voltage requirement. The input voltage at which the devices enter dropout changes depending on the input voltage, output voltage, switching frequency, load current, and the efficiency of the design.

#### **Power Saving Mode**

When the **UD052015** is in the normal CCM operating mode and the switch current falls to 0A, the **UD052015** begins operating in pulse skipping eco-mode. Each switching cycle is followed by a period of energy saving sleep time. The sleep time ends when the V<sub>FB</sub> voltage falls below the eco-mode threshold voltage. As the output current decreases, the perceived time between switching pulses increases.

#### **EN Enable**

The EN pin is provided to control the device turn-on and turn-off. When the EN pin voltage is above the  $V_{ENH}$  threshold (typ.1.25V), the device is enabled. When the EN pin voltage falls below the  $V_{ENL}$  threshold (typ.1V), the **UD052015** is disabled and enters shutdown mode.

#### **Output Under-Voltage Protection**

The **UD052015** detects output under-voltage by monitoring the feedback voltage on the FB pin. When the feedback voltage is below 66%V<sub>FB</sub>, the IC enters hiccup mode to periodically disable and restart the switch operation.

#### **Output Over-Voltage Protection**

The **UD052015** includes an output over- voltage protection (OUTOVP) circuit to limit output voltage and minimize output voltage overshoot. If the  $V_{FB}$  goes above the 115% of the reference voltage, the high-side MOSFET will be forced off to limit the output voltage, When the  $V_{FB}$  drops to 110% of the reference voltage, the control of the high-side MOSFET will be released.

#### Over Current Limit Protection and Output Short Protection

The **UD052015** has cycle-by-cycle peak current limit function. When the inductor current peak value is larger than the peak current limit during high side MOSFET on state, the device enters into peak over current protection mode and low side MOSFET keeps on state until inductor current drops down to the value equal or lower than the peak current limit, and then on time pulse could be generated and high side MOSFET could turn on again. If the output is short to GND and the output voltage drop until feedback voltage V<sub>FB</sub> is below the output under- voltage threshold which is typically 66% of reference voltage, The **UD052015** enters into hiccup mode to periodically disable and restart switching operation. The hiccup mode helps to reduce power dissipation and thermal rise during output short condition. The period of **UD052015** hiccup mode is typically 18ms. The switching operation time in hiccup mode is 3ms. The hiccup mode helps to reduce power dissipation and thermal rising during output short condition.

#### ■ FUNCTION DESCRIPTION (Cont.)

#### **Over-Temperature Protection**

The **UD052015** includes over-temperature Protection function. When the junction temperature exceeds about 160°C, the OTP will turn off the switch operation. Once the junction temperature drops to about 140°C, the IC will resume normal operation.

#### APPLICATION INFORMATION

#### **Output Voltage Setting**

Figure 1 shows the output voltage setting circuit of **UD052015**. The external resistance voltage divider can set the output voltage according to equation (1).

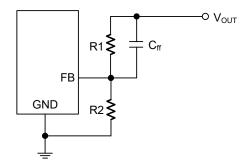



Figure. 1 Output Voltage Setting Circuits

$$V_{OUT} = V_{FB} \times (1 + \frac{R1}{R2}) = 0.6V \times (1 + \frac{R1}{R2})$$
 (1)

Current consumption and noise sensitivity need to be considered in the selection of resistance R2. A feed forward capacitor Cff improves the loop bandwidth to make a fast transient response, but using a larger Cff brings stability problems.

#### **Inductor Selection**

Inductance value, switching frequency, input voltage and output voltage together determine the ripple of inductance current and then affect the output ripple. The ripple of the inductor current can be obtained by Equation (2).

$$\Delta I_{L} = V_{OUT} \times \frac{1 - \frac{V_{OUT}}{V_{IN}}}{L \times F_{SW}}$$
 (2)

Where  $\Delta I_L$  is the inductor current ripple,  $F_{SW}$  is the switching frequency.

To calculate the maximum inductor current under static load conditions, Equation (3) is given:

$$I_{L_{MAX}} = I_{OUT_{MAX}} + \frac{\Delta I_{L}}{2}$$
 (3)

Table 1. Recommended Components Selection

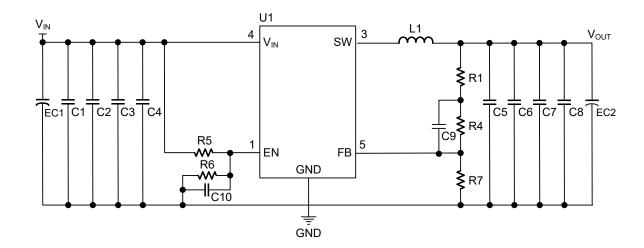
| Vout (V) | R1 (kΩ) | R2 (kΩ) | Cff (pF) | L (µH) | Соит (µF) |
|----------|---------|---------|----------|--------|-----------|
| 3.3      | 100     | 22.1    | 22       | 2.2    | 44-88     |
| 1.8      | 100     | 49.9    | 22       | 2.2    | 44-88     |
| 1.5      | 100     | 66.5    | 22       | 2.2    | 44-88     |
| 1.2      | 100     | 100     | 100      | 2.2    | 44-88     |
| 1.05     | 100     | 133     | 100      | 2.2    | 44-88     |
| 1        | 100     | 150     | 100      | 1      | 44-88     |
| 0.9      | 100     | 200     | 100      | 1      | 44-88     |

# ■ APPLICATION INFORMATION (Cont.)

# **Input Capacitor Selection**

The input capacitor  $C_{IN}$  is needed to filter the fluctuations caused by the pulsating current at the drain of the high-side power MOSFET. Ceramic capacitors with X5R or a better grade ceramic capacitor dielectrics are highly recommended because of their low ESR and small temperature coefficients. A 22 $\mu$ F ceramic capacitor for most applications is sufficient. A large value may be used for improved input voltage filtering. In applications, place the input capacitor  $C_{IN}$  as close as possible to the  $V_{IN}$  pin and GND pin of the IC.

# **Output Capacitor Selection**

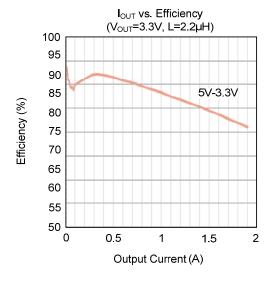

The output voltage ripple at the switching frequency is a function of the inductor current ripple going through the output capacitor's impedance. The output peak-to-peak ripple voltage  $\Delta V_{OUT}$ , caused by the inductor current ripple, is composed of ESR ripple  $\Delta V_{ESR}$  and capacitor ripple  $\Delta V_{Cap}$ . The functional relationship of the output ripple is expressed by Equation (4):

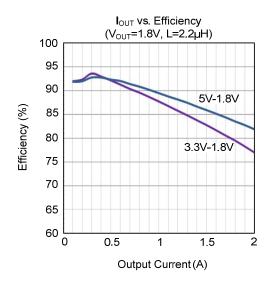
$$\Delta V_{\text{OUT}} = \Delta V_{\text{ESR}} + \Delta V_{\text{Cap}} = \Delta I_{\text{L}} \times R_{\text{ESR}} + \frac{\Delta I_{\text{L}}}{8 \times C_{\text{OLIT}} \times F_{\text{SW}}}$$
(4)

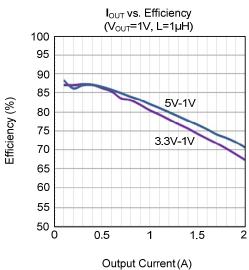
Where R<sub>ESR</sub> is equivalent impedance on capacitor.

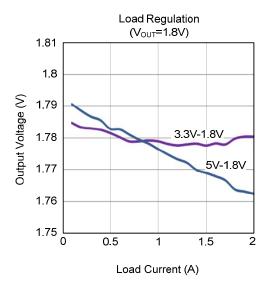
Two 22µF ceramic capacitors can satisfy most applications.

# ■ TYPICAL APPLICATION CIRCUIT

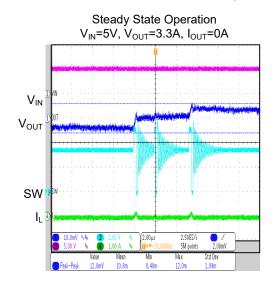


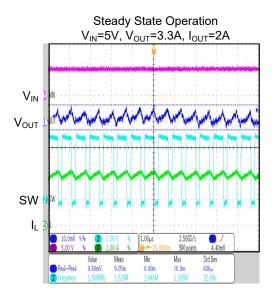


**Table 2. Recommended Component Values** 

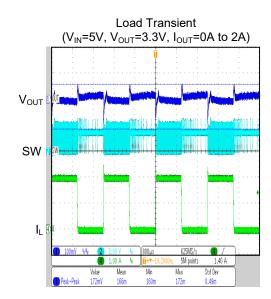

| Qty | Ref                     | Value                  |        |  |
|-----|-------------------------|------------------------|--------|--|
| 1   | C3                      | 22µF                   |        |  |
| 1   | C4                      | 0.1µF                  |        |  |
| 1   | C5                      | 22µF                   |        |  |
| 4   | 60                      | V <sub>OUT</sub> =3.3V | 22pF   |  |
| ı   | C9                      | V <sub>OUT</sub> =1V   | 100pF  |  |
| 0   | C1, C2, C6, C7, C8, C10 | NC                     |        |  |
| 0   | EC1, EC2                | NC                     |        |  |
| 0   | R6                      | NC                     |        |  |
| 1   | R5                      | 100kΩ                  |        |  |
| 1   | R1                      | 0Ω                     |        |  |
| 1   | R4                      | 100kΩ                  |        |  |
| 4   | D.Z                     | V <sub>OUT</sub> =3.3V | 22.1kΩ |  |
| ı   | R7                      | V <sub>OUT</sub> =1V   | 150kΩ  |  |
| ,   | L1                      | V <sub>OUT</sub> =3.3V | 2.2µH  |  |
| 1   |                         | V <sub>OUT</sub> =1V   | 1µH    |  |
| 1   | U1                      |                        | 1      |  |

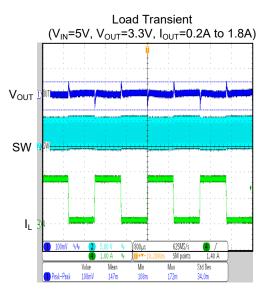

# TYPICAL CHARACTERISTICS

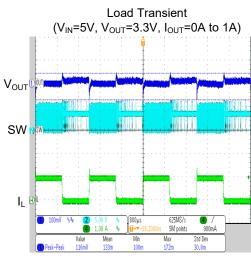
### Test condition: VIN=5V, VOUT=1.8V

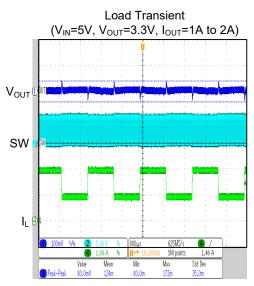


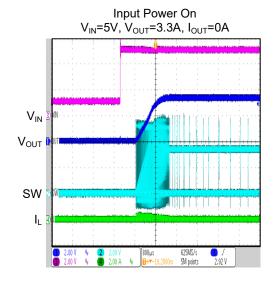



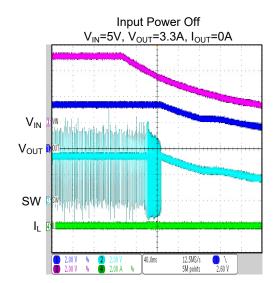



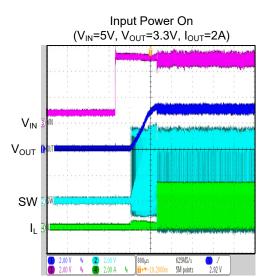


■ TYPICAL CHARACTERISTICS (Cont.)

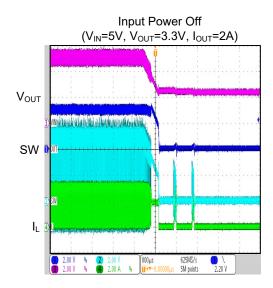


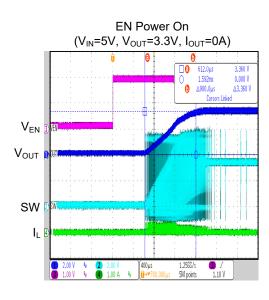


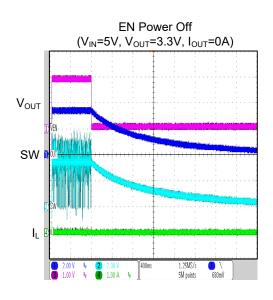



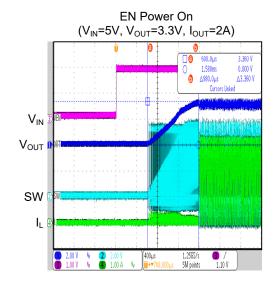



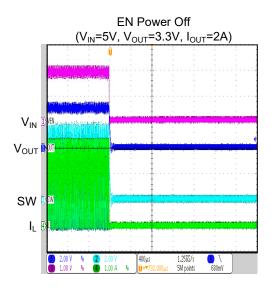



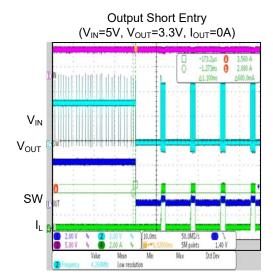


■ TYPICAL CHARACTERISTICS (Cont.)

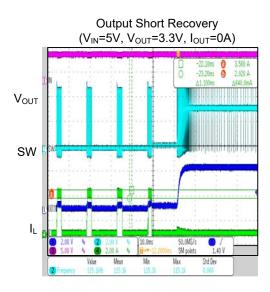


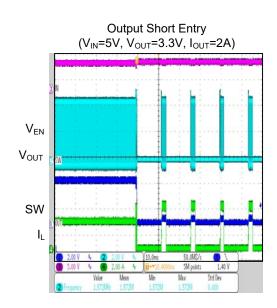


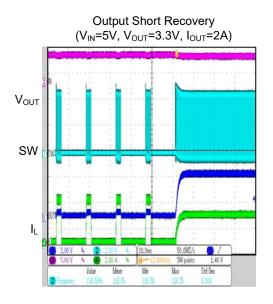





■ TYPICAL CHARACTERISTICS (Cont.)














UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.